A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene
- PMID: 26581077
- PMCID: PMC4651307
- DOI: 10.1371/journal.pone.0142777
A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene
Abstract
Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation.
Conflict of interest statement
Figures








References
-
- Zamani Z, Sarkhosh A, Fatahi R, Ebadi A (2007) Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J Hortic Sci Biotechnol 82: 11–18.
-
- Feng YZ, Song MT, Han DB (2006) The general status of pomegranate germplasm resources in China. China Fruits 4: 57–58.
-
- Ozguven AI, Tatli H, Coskun M, Daskan Y (1997) Fruit characteristics of some Mediterranean and Aegean pomegranate varieties under ecological conditions of Adana, Turkey. Acta Hortic 441: 345–349.
-
- Holland D, Bar-Ya'akov I (2008) The pomegranate: new interest in an ancient fruit. Chron Hortic 48: 12–15.
-
- Levin GM (2006) Pomegranate roads: a Soviet botanist’s exile from Eden. In: Baer BL, ed. Forestville CA: Floreat Press.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources