Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Nov 19:16:254.
doi: 10.1186/s13059-015-0829-4.

Boosting plant immunity with CRISPR/Cas

Affiliations
Review

Boosting plant immunity with CRISPR/Cas

Angela Chaparro-Garcia et al. Genome Biol. .

Abstract

CRISPR/Cas has recently been transferred to plants to make them resistant to geminiviruses, a damaging family of DNA viruses. We discuss the potential and the limitations of this method.See related Research: http://www.genomebiology.com/2015/16/1/238.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic representation of geminivirus replication in a diseased and a CRISPR/Cas engineered resistant plant. In the plant cell of a diseased plant (left), infection geminivirus particles (virions, gray double hexagons) release the viral single-stranded DNA (ssDNA) into the plant nucleus (green dashed ellipse). Host DNA polymerase mediates the synthesis of the complementary strand, resulting in viral double-stranded DNA (dsDNA) molecules. Transcription of dsDNA leads to production of Rep protein, which initiates viral replication via rolling-circle replication (purple circle surrounded by blue open circle). Multiple cycles of viral replication (colored circles) generate new ssDNA that can re-enter replication or can be packaged into virions. In contrast, plant cells expressing a CRISPR/Cas construct that carries sgRNAs targeting sites in the viral genome (right) will become resistant to virus infection. The Cas9–sgRNA complex will target the viral dsDNA for cleavage, inhibiting viral replication. Cas CRISPR-associated, CRISPR clustered regularly interspaced short palindromic repeats, dsDNA double-stranded DNA, sgRNA single guide RNA, ssDNA single-stranded DNA

References

    1. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015;16:238. doi: 10.1186/s13059-015-0799-6. - DOI - PMC - PubMed
    1. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11:777–88. doi: 10.1038/nrmicro3117. - DOI - PubMed
    1. Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P. Engineering resistance to geminiviruses--review and perspectives. Plant Biotechnol J. 2007;5:207–20. doi: 10.1111/j.1467-7652.2006.00217.x. - DOI - PubMed
    1. Reyes MI, Nash TE, Dallas MM, Ascencio-Ibanez JT, Hanley-Bowdoin L. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol. 2013;87:9691–706. doi: 10.1128/JVI.01095-13. - DOI - PMC - PubMed
    1. Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, et al. A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genet. 2015;11:e1005538. - PMC - PubMed

Publication types