Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 5;7(1):293-307.
doi: 10.18632/oncotarget.6344.

miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer

Affiliations

miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer

Xiaohui Tan et al. Oncotarget. .

Abstract

MicroRNA (miRNA) dysfunction is associated with a variety of human diseases, including cancer. Our previous study showed that miR-671-5p was deregulated throughout breast cancer progression. Here, we report for the first time that miR-671-5p is a tumor-suppressor miRNA in breast tumorigenesis. We found that expression of miR-671-5p was decreased significantly in invasive ductal carcinoma (IDC) compared to normal in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Forkhead Box M1 (FOXM1), an oncogenic transcription factor, was predicted as one of the direct targets of miR-671-5p, which was subsequently confirmed by luciferase assays. Forced expression of miR-671-5p in breast cancer cell lines downregulated FOXM1 expression, and attenuated the proliferation and invasion in breast cancer cell lines. Notably, overexpression of miR-671-5p resulted in a shift from epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) phenotypes in MDA-MB-231 breast cancer cells and induced S-phase arrest. Moreover, miR-671-5p sensitized breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin exposure. Host cell reactivation (HCR) assays showed that miR-671-5p reduces DNA repair capability in post-drug exposed breast cancer cells. cDNA microarray data revealed that differentially expressed genes when miR-671-5p was transfected are associated with cell proliferation, invasion, cell cycle, and EMT. These data indicate that miR-671-5p functions as a tumor suppressor miRNA in breast cancer by directly targeting FOXM1. Hence, miR-671-5p may serve as a novel therapeutic target for breast cancer management.

Keywords: EMT; FOXM1; breast cancer; miR-671-5p; tumor suppressor.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1. Expression of miR-671-5p in IDC vs. adjacent normal
Black bars depict TNBCs while gray bars are for non-TNBCs, in comparison to the normal in white. Down-regulation of miR-671-5p expression was present in 21 of 30 (70%) of IDC compared with their adjacent normal tissue (p < 0.05).
Figure 2
Figure 2. miR-671-5p targets FOXM1 in breast cancer cell lines
(A) Inverse correlated expression of miR-671-5p and its target FOXM1 in breast cancer cell lines. (B) Location of the miR-671-5p binding site at the 3′-UTR of FOXM1 corresponding to the miR-671-5p sequence. (C) Relative luciferase activity was measured in breast cancer cell lines co-transfected with 100 ng of DNA with pEZX-miR-671-5p or pEZX-scrambled control (mock), and 100 ng of pEZX-MT05-FOXM1 (wild type or mutant) by FuGENE reagent (Promega) for 48 h. The data were reported as mean ± S.D. for three independent experiments (*p < 0.05).
Figure 3
Figure 3. miR-671-5p negatively regulates FOXM1 expression in breast cancer cell lines
(A) qRT-PCR analysis of miR-671-5p and FOXM1 mRNA expression in breast cancer cell lines transfected with miR-671-5p mimic or mock (**p < 0.01, *p < 0.05). (B) Immunofluorescence analysis of FOXM1 protein expression in MDA-MB-231 cells transfected with miR-671-5p or mock. (C) Western blotting analysis of FOXM1 expression in breast cancer cell lines. FOXM1 expression was decreased more significantly in MDA-MB-231 (71%) and MCF-7 (60%) cells in comparison with SKBR3 (23%) cells when miR-671-5p was overexpressed.
Figure 4
Figure 4. miR-671-5p inhibits proliferation and decreases invasive ability of breast cancer cell lines
(A) FOXM1 protein expression was examined by Western blot after transfection of miR-671-5p mimic and inhibitor. (B) Effects of miR-671-5p on cell proliferation were determined by MTT assays. Proliferative activity was decreased after transfection of miR-671-5p mimic and increased after transfection of miR-671-5p inhibitor compared to the mock control in breast cancer cell lines. Values represent the mean ± S.D. for three independent experiments (**p < 0.01, *p < 0.05). (C) Transwell assays with Matrigel were performed for the invasion activity of breast cancer cells transfected with either miR-671-5p mimic or the mock control. Overexpression of miR-671-5p significantly reduces cell invasion in MDA-MB-231, Hs578T and SKBR3, but only slightly in MCF-7 and T47D. Invasion ability of the cells was displayed as a percentage of the absolute cell number (bottom). Results are displayed as mean data ± SE (**p < 0.01, *p < 0.05). Five fields of unit area on each membrane or whole membrane were counted for cell numbers, and the experiments were repeated three times in triplicate.
Figure 5
Figure 5. miR-671-5p induces S-phase arrest and inhibits EMT
(A) Schematic diagram of miR-671-5p precursor sequence in pEZX-MR04. (B) Overexpression of miR-671-5p (top) induces S-phase arrest by flow cytometry (middle) and downregulated CCNB1 expression (bottom) in miR-671-5p stable transfected MDA-MB-231 cells when compared with mock transfected cells using Western blot analysis. (C) Overexpression of miR-671-5p shifts MDA-MB-231 cells from EMT to MET phenotype. Top panel showing cell morphology was observed by microscopy in MDA-MB-231 cells transfected with mock and miR-671-5p. Mock transfected MDA-MB-231 cells displayed elongated, irregular fibroblastoid morphology whereas miR-671-5p transfected cells showed a more epithelioid appearance. The middle panel shows immunofluorescence staining of E-cadherin and vimentin in the indicated cells. The bottom panel shows the Western blot analysis of E-cadherin and vimentin protein levels in indicated cells.
Figure 6
Figure 6. Effect of miR-671-5p on sensitivity of breast cancer cell lines to UVC/Chemosensitivity
miR-671-5p or mock was stable transfected into MDA-MB-231 cell line. The stable transfected MDA-MB-231 cell line was further transfected with miR-671-5p inhibitor or mock. Cells were treated by cisplatin, 5-FU, epirubicin and UVC respectively. Cell sensitivity was measured by MTT assays. miR-671-5p overexpression significantly increased cell sensitivity to cisplatin, 5-FU and epirubicin. Results are displayed as mean data ± SE. **p < 0.01 and *p < 0.05 are considered statistically significant with comparison to the mock.
Figure 7
Figure 7. A schematic model for the regulation of miR-671-5p
miR-671-5p directly targets FOXM1. Down-regulation of FOXM1 could 1) inhibit GINS2 and promote cell proliferation; 2) inhibit CDK2 and enhance cell invasion and induce S-phase arrest; 3) inhibit CCNB1 to induce S-phase arrest; 3) inhibit MCM10 which is involved in S-phase arrest and EMT; 4) inhibit CCNB1 to induce S-phase arrest; 5) affect DNA repair gene(s) to function in chemotherapy.

References

    1. Elgar G, Vavouri T. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet. 2008;24:344–352. - PubMed
    1. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES. Distinguishing protein-coding and noncoding genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:19428–19433. - PMC - PubMed
    1. Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, Teal CB, Brem RF, Stojadinovic A, Grinkemeyer M, McCaffrey TA, Man YG, Fu SW. Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One. 2013;8:e54213. - PMC - PubMed
    1. Costa PM. PdLM MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression. Pharmaceuticals (Basel) 2013;6:1195–1220. - PMC - PubMed
    1. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, Teal CB, Man YG, Brem RF, Fu SW. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple negative breast cancer. Breast Cancer Res. 2014;16:435. - PMC - PubMed

Publication types

MeSH terms