Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 12;10(8):3038-54.
doi: 10.1021/ct4009624. Epub 2014 Jun 6.

Reaction Path Force Matching: A New Strategy of Fitting Specific Reaction Parameters for Semiempirical Methods in Combined QM/MM Simulations

Affiliations

Reaction Path Force Matching: A New Strategy of Fitting Specific Reaction Parameters for Semiempirical Methods in Combined QM/MM Simulations

Yan Zhou et al. J Chem Theory Comput. .

Abstract

We present a general strategy of reparametrizing semiempirical (SE) methods against ab initio (AI) methods for combined quantum mechanical and molecular mechanical (QM/MM) simulations of specific chemical reactions in condensed phases. The resulting approach, designated Reaction Path Force Matching (RP-FM), features cycles of sampling configurations along a reaction path on an efficient SE/MM potential energy surface (PES) and adjusting specific reaction parameters (SRPs) in the SE method such that the atomic forces computed at the target AI/MM level are reproduced. Iterative applications of the RP-FM cycle make possible achieving the accuracy of AI/MM simulations without explicitly sampling the computationally expensive AI/MM PES. The bypassed sampling, nevertheless, is implicitly accomplished through the aid of the efficient SE-SRP/MM PES, on which the target-level reaction path is expected to be obtained upon convergence. We demonstrate the effectiveness of the RP-FM procedure for a symmetric proton transfer reaction in the gas phase and in solution. The remarkable agreements between the RP-FM optimized SE-SRP methods and the target AI method on various properties, including energy profiles, potential of mean force free energy profiles, atomic forces, charge populations, and solvation effects, suggest that RP-FM can be used as an efficient and reliable strategy for simulating condensed-phase chemical reactions.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources