Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct:53:143-50.
doi: 10.1016/j.jtherbio.2015.10.002. Epub 2015 Oct 17.

The impact of in utero heat stress and nutrient restriction on progeny body composition

Affiliations

The impact of in utero heat stress and nutrient restriction on progeny body composition

Jay S Johnson et al. J Therm Biol. 2015 Oct.

Abstract

We recently demonstrated that in utero heat stress (IUHS) alters future tissue accretion in pigs, but whether this is a conserved response among species, is due to the direct effects of heat stress (HS) or mediated by reduced maternal feed intake (FI) is not clear. Study objectives were to compare the quantity and rate of tissue accretion in rats exposed to differing in utero thermal environments while eliminating the confounding effect of dissimilar maternal FI. On d3 of gestation, pregnant Sprague-Dawley rats (189.0±5.9g BW) were exposed to thermoneutral (TN; 22.2±0.1°C; n=8), or HS conditions (cyclical 30 to 34°C; n=8) until d18 of gestation. A third group was pair-fed to HS dams in TN conditions (PFTN; 22.2±0.1°C; n=8) from d4 to d19 of gestation. HS increased dam rectal temperature (p=0.01; 1.3°C) compared to TN and PFTN mothers, and reduced FI (p=0.01; 33%) compared to TN ad libitum fed controls. Although litter size was similar (p=0.97; 10.9 pups/litter), pup birth weight was reduced (p=0.03; 15.4%) in HS compared to PFTN and TN dams. Two male pups per dam [n=8 in utero TN (IUTN); n=8 IUHS; n=8 in utero PFTN (IUPFTN)] were selected from four dams per treatment based on similar gestation length, and body composition was determined using dual-energy x-ray absorptiometry (DXA) on d26, d46, and d66 of postnatal life. Whole-body fat content increased (p=0.01; 11.2%), and whole-body lean tissue decreased (p=0.01; 2.6%) in IUPFTN versus IUTN and IUHS offspring. Whole-body composition was similar between IUHS and IUTN offspring. Epididymal fat pad weight increased (p=0.03; 21.6%) in IUPFTN versus IUHS offspring. In summary and in contrast to pigs, IUHS did not impact rodent body composition during this stage of growth; however, IUPFTN altered the future hierarchy of tissue accretion.

Keywords: Intrauterine programming; Maternal undernutrition; Rats; Tissue accretion.

PubMed Disclaimer

Publication types

LinkOut - more resources