Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;13(4):953-61.
doi: 10.1016/j.hrthm.2015.11.019. Epub 2015 Nov 23.

Unmasking atrial repolarization to assess alternans, spatiotemporal heterogeneity, and susceptibility to atrial fibrillation

Affiliations

Unmasking atrial repolarization to assess alternans, spatiotemporal heterogeneity, and susceptibility to atrial fibrillation

Richard L Verrier et al. Heart Rhythm. 2016 Apr.

Abstract

Background: Detection of atrial repolarization waves free of far-field signal contamination by ventricular activation would allow investigation of atrial electrophysiology and factors that influence susceptibility to atrial tachycardia and atrial fibrillation (AF).

Objective: The purpose of this study was to identify means for high-resolution intracardiac recording of atrial repolarization (Ta) waves using standard clinical electrocatheters and to assess fundamental electrophysiologic properties relevant to AF risk.

Methods: In alpha-chloralose anesthetized Yorkshire pigs, we studied effects of vagus nerve stimulation (VNS) on PTa and QT intervals and effects of acute atrial ischemia or administration of intrapericardial acetylcholine followed by intravenous epinephrine on susceptibility to AF.

Results: Electrocatheters with closely spaced (1-mm) electrode pairs yielded high-resolution tracings of atrial repolarization waves. These recordings permitted detection of differential effects of right or left VNS, which shortened atrial PTa interval by 30% vs. 21% (P <.01) and lengthened QT interval by 1.5% vs. 9%, respectively (P < .05). During atrial ischemia, STa segments were elevated 3.4-fold (P < .01), and the threshold for inducing AF was reduced 3.1-fold (P = .004). Ischemia amplified atrial T-wave alternans (TWAa) and spatiotemporal heterogeneity (TWHa) by 23- and 13-fold, respectively, in inverse correlation to AF threshold (r = 0.74, P <.01; r = 0.61, P = .03). TWAa and TWHa increased by 4.5- and 2-fold shortly before autonomically triggered atrial premature beats and AF.

Conclusion: This study used standard electrocatheters to demonstrate that TWAa and TWHa analysis provides means to assess vulnerability to AF without provocative electrical stimuli. These parameters could be evaluated in the clinical electrophysiology laboratory to determine risk for this prevalent arrhythmia and efficacy of contemporary and new agents.

Keywords: Atrial fibrillation; Cardiac electrophysiologic testing; Catecholamines; Electrode catheter; Electrophysiologic mapping; Monophasic action potential; Myocardial ischemia; Repolarization alternans; Repolarization heterogeneity; Vagus nerve stimulation.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources