Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May 15;181(3):733-9.
doi: 10.1111/j.1432-1033.1989.tb14785.x.

Expression of yeast invertase in oocytes from Xenopus laevis. Secretion of active enzyme differing in glycosylation

Affiliations
Free article

Expression of yeast invertase in oocytes from Xenopus laevis. Secretion of active enzyme differing in glycosylation

T Roitsch et al. Eur J Biochem. .
Free article

Abstract

In an effort to understand factors that control glycosylation of proteins and processing of carbohydrate chains, invertase from Saccharomyces cerevisiae was expressed in a heterologous system. Microinjection of invertase-specific in vitro transcripts into oocytes from Xenopus laevis resulted in synthesis, glycosylation and secretion of enzymatically active invertase. It was found that although the number of carbohydrate chains acquired is the same as in yeast, the carbohydrate processing is different. This is consistent with the notion that the usage of a glycosylation site is determined by the protein part, whereas subsequent processing occurs in a host-dependent manner. Both, high-mannose and complex type glycans, most likely tri- and tetra-antennary structures, were synthesized in oocytes. The data obtained suggests that in this system the core chains of yeast invertase remain high-mannose type, whereas the more extensively processed polymannose chains are modified to complex oligosaccharides. In the presence of the glycosylation inhibitor, tunicamycin, and the glucosidase processing inhibitor, methyldeoxynojirimycin, secretion of invertase is significantly decreased, whereas in the presence of the mannosidase inhibitor, deoxymannojirimycin, no influence of secretion is seen. This may suggest that glycosylation of invertase is important for early secretion events. Expression of invertase lacking the leader sequence results in loss of glycosylation and secretion in oocytes. This indicates that yeast signals for secretion are functional in this higher eukaryote.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources