Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan:90:133-44.
doi: 10.1016/j.freeradbiomed.2015.11.020. Epub 2015 Nov 28.

Citron Rho-interacting kinase mediates arsenite-induced decrease in endothelial nitric oxide synthase activity by increasing phosphorylation at threonine 497: Mechanism underlying arsenite-induced vascular dysfunction

Affiliations

Citron Rho-interacting kinase mediates arsenite-induced decrease in endothelial nitric oxide synthase activity by increasing phosphorylation at threonine 497: Mechanism underlying arsenite-induced vascular dysfunction

Jungwon Seo et al. Free Radic Biol Med. 2016 Jan.

Abstract

We reported that arsenite causes an acute decrease in nitric oxide (NO) production by increasing phosphorylation of endothelial NO synthase at threonine 497 (eNOS-Thr(497)); however, the detailed mechanism has not yet been clarified. Here, we investigated the kinase involving in arsenite-stimulated eNOS-Thr(497) phosphorylation. Although treatment with H-89, a known protein kinase A (PKA) inhibitor, inhibited arsenite-stimulated eNOS-Thr(497) phosphorylation, no inhibition was found in cells treated with other PKA inhibitors, including Rp-8-Br-cAMPS or PKI. Based on previous reports, we also tested whether RhoA mediates arsenite-stimulated eNOS-Thr(497) phosphorylation and found that arsenite causes an acute increase in RhoA activity. Ectopic expression of dominant negative (DN)-RhoA significantly reversed arsenite-stimulated eNOS-Thr(497) phosphorylation. An in vitro phosphorylation assay also revealed that the well-known Rho effectors, Rho-associated protein kinase 1/2 (ROCK1/2), directly phosphorylate eNOS-Thr(497). Y27632, a selective ROCK inhibitor, reversed arsenite-stimulated eNOS-Thr(497) phosphorylation. However, overexpression of a small interfering RNA (siRNA) against ROCK1/2 or DN-ROCK did not reverse arsenite-stimulated eNOS-Thr(497) phosphorylation, thereby providing no conclusive evidence of a role for ROCK1/2. Knockdown of PKC-related protein kinase 1/2, another Rho effector, also did not reverse arsenite-stimulated eNOS-Thr(497) phosphorylation. In contrast, we found that transfection with an siRNA against citron Rho-interacting kinase (CRIK), the other downstream effector of Rho, significantly reversed the arsenite-induced eNOS-Thr(497) phosphorylation that was accompanied by restoration of eNOS enzymatic activity repressed by arsenite. Moreover, CRIK directly phosphorylated eNOS-Thr(497)in vitro. Finally, we also found that arsenite increased eNOS-Thr(497) phosphorylation and decreased acetylcholine-induced vessel relaxation in rat aortas. In conclusion, we demonstrate that arsenite acutely inhibits eNOS enzymatic activity and vessel relaxation in part by increasing the RhoA/CRIK/eNOS-Thr(497) phosphorylation signaling axis, which provides a molecular mechanism underlying arsenite-induced impaired vascular diseases.

Keywords: Arsenite; Citron Rho-interacting kinase; Endothelial nitric oxide synthase; Ex vivo vessel relaxation; Nitric oxide; Phosphorylation; Rho; Vascular disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources