Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan-Feb;7(1):71-89.
doi: 10.1002/wrna.1316. Epub 2015 Nov 24.

Cytoplasmic polyadenylation in mammalian oocyte maturation

Affiliations
Review

Cytoplasmic polyadenylation in mammalian oocyte maturation

Juan M Reyes et al. Wiley Interdiscip Rev RNA. 2016 Jan-Feb.

Abstract

Oocyte developmental competence is the ability of the mature oocyte to be fertilized and subsequently drive early embryo development. Developmental competence is acquired by completion of oocyte maturation, a process that includes nuclear (meiotic) and cytoplasmic (molecular) changes. Given that maturing oocytes are transcriptionally quiescent (as are early embryos), they depend on post-transcriptional regulation of stored transcripts for protein synthesis, which is largely mediated by translational repression and deadenylation of transcripts within the cytoplasm, followed by recruitment of specific transcripts in a spatiotemporal manner for translation during oocyte maturation and early development. Motifs within the 3' untranslated region (UTR) of messenger RNA (mRNA) are thought to mediate repression and downstream activation by their association with binding partners that form dynamic protein complexes that elicit differing effects on translation depending on cell stage and interacting proteins. The cytoplasmic polyadenylation (CP) element, Pumilio binding element, and hexanucleotide polyadenylation signal are among the best understood motifs involved in CP, and translational regulation of stored transcripts as their binding partners have been relatively well-characterized. Knowledge of CP in mammalian oocytes is discussed as well as novel approaches that can be used to enhance our understanding of the functional and contributing features to transcript CP and translational regulation during mammalian oocyte maturation. WIREs RNA 2016, 7:71-89. doi: 10.1002/wrna.1316 For further resources related to this article, please visit the WIREs website.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources