Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr;13(4):242-54.
doi: 10.1038/nrclinonc.2015.204. Epub 2015 Nov 24.

Computational oncology--mathematical modelling of drug regimens for precision medicine

Affiliations
Review

Computational oncology--mathematical modelling of drug regimens for precision medicine

Dominique Barbolosi et al. Nat Rev Clin Oncol. 2016 Apr.

Abstract

Computational oncology is a generic term that encompasses any form of computer-based modelling relating to tumour biology and cancer therapy. Mathematical modelling can be used to probe the pharmacokinetics and pharmacodynamics relationships of the available anticancer agents in order to improve treatment. As a result of the ever-growing numbers of druggable molecular targets and possible drug combinations, obtaining an optimal toxicity-efficacy balance is an increasingly complex task. Consequently, standard empirical approaches to optimizing drug dosing and scheduling in patients are now of limited utility; mathematical modelling can substantially advance this practice through improved rationalization of therapeutic strategies. The implementation of mathematical modelling tools is an emerging trend, but remains largely insufficient to meet clinical needs; at the bedside, anticancer drugs continue to be prescribed and administered according to standard schedules. To shift the therapeutic paradigm towards personalized care, precision medicine in oncology requires powerful new resources for both researchers and clinicians. Mathematical modelling is an attractive approach that could help to refine treatment modalities at all phases of research and development, and in routine patient care. Reviewing preclinical and clinical examples, we highlight the current achievements and limitations with regard to computational modelling of drug regimens, and discuss the potential future implementation of this strategy to achieve precision medicine in oncology.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Oncol. 2003 Apr 15;21(8):1425-8 - PubMed
    1. Br J Cancer. 2012 Aug 21;107(5):814-22 - PubMed
    1. Cancer Cell. 2009 Mar 3;15(3):232-9 - PubMed
    1. PLoS Comput Biol. 2014 Aug 28;10(8):e1003800 - PubMed
    1. Clin Cancer Res. 2014 Jul 15;20(14 ):3742-52 - PubMed

Publication types

MeSH terms

Substances