Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae)
- PMID: 26599630
- PMCID: PMC4657909
- DOI: 10.1371/journal.pone.0143478
Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae)
Abstract
The intensively discussed taxonomic complexity of the Dactylorhiza genus is probably correlated with its migration history during glaciations and interglacial periods. Previous studies on past processes affecting the current distribution of Dactylorhiza species as well as the history of the polyploid complex formation were based only on molecular data. In the present study the ecological niche modeling (ENM) technique was applied in order to describe the distribution of potential refugia for the selected Dactylorhiza representatives during the Last Glacial Maximum. Additionally, future changes in their potential habitat coverage were measured with regard to three various climatic change scenarios. The maximum entropy method was used to create models of suitable niche distribution. A database of Dactylorhiza localities was prepared on the grounds of information collected from literature and data gathered during field works. Our research indicated that the habitats of majority of the studied taxa will decrease by 2080, except for D. incarnata var. incarnata, for which suitable habitats will increase almost two-fold in the global scale. Moreover, the potential habitats of some taxa are located outside their currently known geographical ranges, e.g. the Aleutian Islands, the western slopes of the Rocky Mountains, Newfoundland, southern Greenland and Iceland. ENM analysis did not confirm that the Balkans, central Europe or central Russia served as the most important refugia for individual representatives of the Dactylorhiza incarnata/maculata complex. Our study rather indicated that the Black Sea coast, southern Apennines and Corsica were the main areas characterized by habitats suitable for most of the taxa.
Conflict of interest statement
Figures







References
-
- Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The Last Glacial Maximum. Science. 2009;25: 710–714. - PubMed
-
- Nordal I, Jonsell BA. phylogeographic analysis of Viola rupestris: three post-glacial immigration routes into the Nordic area? Bot J Linn Soc. 1998;128: 105–122.
-
- Schiemann K, Tyler T, Widén B. Allozyme diversity in relation to geographic distribution and population size in Lathyrus vernus (L.) Bernh. (Fabaceae). Plant Syst Evol. 2000;225: 119–132.
-
- Malm JU, Prentice HC. Immigration history and gene dispersal: allozyme variation in Nordic populations of the red campion, Silene dioica (Caryophyllaceae). Biol J Linn Soc. 2002;77: 23–34.
-
- Rendell S, Ennos RA. Chloroplast DNA diversity in Calluna vulgaris (heather) populations in Europe. Mol Ecol. 2002;11: 69–78. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous