Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec;4(1):33.
doi: 10.1186/s40169-015-0074-1. Epub 2015 Nov 24.

Clinical potential of gene mutations in lung cancer

Affiliations

Clinical potential of gene mutations in lung cancer

Miranda B Carper et al. Clin Transl Med. 2015 Dec.

Abstract

Lung cancer is the most common cancer type worldwide and the leading cause of cancer related deaths in the United States. The majority of newly diagnosed patients present with late stage metastatic lung cancer that is inoperable and resistant to therapies. High-throughput genomic technologies have made the identification of genetic mutations that promote lung cancer progression possible. Identification of the mutations that drive lung cancer provided new targets for non-small cell lung cancer (NSCLC) treatment and led to the development of targeted therapies such as tyrosine kinase inhibitors that can be used to combat the molecular changes that promote cancer progression. Development of targeted therapies is not the only clinical benefit of gene analysis studies. Biomarkers identified from gene analysis can be used for early lung cancer detection, determine patient's prognosis and response to therapy, and monitor disease progression. Biomarkers can be used to identify the NSCLC patient population that would most benefit from treatment (targeted therapies or chemotherapies), providing clinicians tools that can be used to develop a personalized treatment plan. This review explores the clinical potential of NSCLC genetic studies on diagnosing and treating NSCLC.

Keywords: Bench-to-bedside; Biomarkers; Mutations; NSCLC; Personalized therapy; Targeted therapy.

PubMed Disclaimer

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254. - DOI - PubMed
    1. Wood SL, Pernemalm M, Crosbie PA, Whetton AD. Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev. 2015;41(4):361–375. doi: 10.1016/j.ctrv.2015.02.008. - DOI - PubMed
    1. Coco S, Truini A, Vanni I, Dal Bello MG, Alama A, Rijavec E, et al. Next generation sequencing in non-small cell lung cancer: new avenues toward the personalized medicine. Curr Drug Targets. 2015;16(1):47–59. doi: 10.2174/1389450116666141210094640. - DOI - PubMed
    1. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039–1049. doi: 10.1200/JCO.2012.45.3753. - DOI - PMC - PubMed
    1. Hirsch FR, Varella-Garcia M, Bunn PA, Jr, Franklin WA, Dziadziuszko R, Thatcher N, et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol. 2006;24(31):5034–5042. doi: 10.1200/JCO.2006.06.3958. - DOI - PubMed

LinkOut - more resources