Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;31(3):688-93.
doi: 10.1016/j.arth.2015.09.027. Epub 2015 Sep 26.

Influence of the Medial Knee Structures on Valgus and Rotatory Stability in Total Knee Arthroplasty

Affiliations

Influence of the Medial Knee Structures on Valgus and Rotatory Stability in Total Knee Arthroplasty

Norishige Iizawa et al. J Arthroplasty. 2016 Mar.

Abstract

Background: Precise biomechanical knowledge of individual components of the MCL is critical for proper MCL release during TKA. This study was to define the influences of the deep MCL and the POL on valgus and rotatory stability in TKA using cadaveric knees.

Methods: This study used six fresh-frozen cadaveric knees. All TKA procedures were performed using a cruciate-retaining TKA with a CT-free navigation system. We did a sequential sectioning on each knee, S1; femoral arthroplasty only, S2; medial half tibial resection with spacer, S3; anterior cruciate ligament cut, S4; tibial arthroplasty, S5; release of the dMCL, S6; release of the POL. The navigation system monitored motion after application of 10 N-m valgus loads and 5 N-m internal and external rotation torques to the tibia at 0°, 20°, 30°, 60°, and 90° of knee flexion for each sequence.

Results: There were no significant differences in medial gaps. Internal rotation angles significantly increased after S2 at 0°, 20°, and 30°, and after S6 at 90° compared with those after S1. External rotation angles significantly increased after S3 at 0°, S4 at 60°, S5 at 0°, 30° and 90°, and after S6 at 30°, 60° compared with those after S1.

Conclusion: Significant increases of rotatory instability were seen on release of the dMCL, and then further increased after release of the POL. Surgical approach of retaining the dMCL and POL has a possibility to improve the outcome after primary TKA.

Keywords: biomechanics; deep medial collateral ligament; instability; navigation; posterior oblique ligament; soft tissue release.

PubMed Disclaimer

LinkOut - more resources