Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May-Jun;5(3):187-98.
doi: 10.1002/yea.320050308.

5'-secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast

Affiliations

5'-secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast

A J Bettany et al. Yeast. 1989 May-Jun.

Abstract

The effects of poor codon bias and secondary structure formation upon the translation of the pyruvate kinase (PYK1) mRNA have been investigated in Saccharomyces cerevisiae. Following insertion mutagenesis at the 5'-end of the PYK1 coding region, the gene was transformed into yeast, and translation assessed directly in vivo by determining the distribution of the modified PYK1 mRNAs across polysomes fractionated by sucrose density gradient centrifugation. The chromosomally-encoded (wild-type) PYK1 mRNA, and the actin, ribosomal protein L3 and glyceraldehyde-3-phosphate dehydrogenase mRNAs were used to control for minor differences between polysome preparations. An insertion containing 13 non-preferred codons at the 5'-end of the coding region was found to have no significant effect upon PYK1 mRNA translation. In contrast, translation was inhibited by an insertion which increased the formation of secondary structures at the 5'-end of the mRNA (overall delta G = -36.6 kcal/mol). Control insertions were also analysed to exclude the possibility that alterations to the amino acid sequence of pyruvate kinase affect the translation of its mRNA. These insertions, which introduced preferred codons or restored wild-type levels of secondary structure formation, did not significantly influence PYK1 mRNA translation.

PubMed Disclaimer

Publication types

LinkOut - more resources