Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2015 Nov 25:12:144.
doi: 10.1186/s12966-015-0306-1.

Validity and responsiveness of four measures of occupational sitting and standing

Affiliations
Randomized Controlled Trial

Validity and responsiveness of four measures of occupational sitting and standing

Femke van Nassau et al. Int J Behav Nutr Phys Act. .

Abstract

Background: Evidence on the detrimental health effects of prolonged sedentary behavior is accumulating. Interventions need to have a specific focus on sedentary behavior in order to generate clinically meaningful decreases in sedentary time. When evaluating such intervention, the question whether a participant improved or deteriorated their behavior is fundamental and instruments that are able to detect those changes are essential. Therefore, the aim of this study was to determine the criterion validity against activPAL and responsiveness to change of two activity monitors (ActiGraph and activPAL) and two questionnaires for the assessment of occupational sitting and standing time.

Methods: 42 participants took part in the Stand@Work intervention trial. Six (T0) and two (T1) weeks before they received a sit-stand workstation and three weeks thereafter (T2), participants wore an ActiGraph and an activPAL activity monitor, and completed the Occupational Sitting and Physical Activity Questionnaire (OSPAQ) and the Workforce Sitting Questionnaire (WSQ). The activPAL was used as the criterion validity measure.

Results: The ActiGraph showed strong validity for occupational sedentary time at T0 and T1 (Spearman rho = 0.77 and 0.69), but its validity dropped substantially after introduction of the sit-stand workstation (rho = 0.19). Correlations between occupational light-intensity activity assessed by the ActiGraph and occupational standing time assessed by the activPAL varied between 0.25-0.63. The occupational sitting validity correlation of the OSPAQ and WSQ varied from 0.35-0.48 and 0.25-0.30, respectively, and between 0.16-0.68 for the OSPAQ for occupational standing time. The intervention-induced changes in occupational sitting and standing time were well detected by the activPAL, OSPAQ and WSQ (sitting only), but not by the ActiGraph, which had the lowest responsiveness to change.

Conclusions: This study suggests that studies aimed at determining differences in occupational sitting and standing time should use activPAL-type inclinometers as a preferred type of objective measure. Simple questionnaires showed sufficient validity and are usable in addition to an objective measure or alone when objective monitoring is not possible. The hip-worn ActiGraph was unable to distinguish between occupational sitting and standing time, when using uniaxial data and traditional cut-points for sedentary time and light-intensity activity.

Trial registration: The study was registered with the Australian New Zealand Clinical Trials Registry (No. ACTRN 12612000072819).

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Design of the study. *No data for the first intervention group, which only participated in T1 and T2, because they could not serve as a time synchronized control condition
Fig. 2
Fig. 2
Bland-Altman plots for OSPAQ, WSQ and ActiGraph, when compared to the activPAL for sitting and standing at three study time points. *The solid line represents the mean differences between the two measures and the two dashed lines are the 95 %

References

    1. Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily Sitting Time and All-Cause Mortality: A Meta-Analysis. PLoS One. 2013;8(11):e80000. doi: 10.1371/journal.pone.0080000. - DOI - PMC - PubMed
    1. Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40:174–182. doi: 10.1016/j.amepre.2010.10.015. - DOI - PubMed
    1. Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41:207–215. doi: 10.1016/j.amepre.2011.05.004. - DOI - PubMed
    1. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55:2895–2905. doi: 10.1007/s00125-012-2677-z. - DOI - PubMed
    1. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95:437–445. doi: 10.3945/ajcn.111.019620. - DOI - PMC - PubMed

Publication types