Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 May;29(5):395-404.
doi: 10.1002/j.1552-4604.1989.tb03351.x.

Cardiac excitability and antiarrhythmic drugs: a different perspective

Affiliations
Review

Cardiac excitability and antiarrhythmic drugs: a different perspective

M F Arnsdorf. J Clin Pharmacol. 1989 May.

Abstract

A matrix of active and passive cellular properties determines net cardiac excitability. The hypothesis of altered excitability suggests that for cardiac arrhythmias to arise, the normal matrix must be perturbed by arrhythmogenic influences to produce a proarrhythmic matrical configuration to permit rhythm disturbances caused by abnormalities of propagation, abnormal automaticity, or altered excitability. Antiarrhythmic drugs may act with one or more components of the normal or proarrhythmic matrix to normalize or to create new antiarrhythmic or, perhaps, proarrhythmic matrices. Traditionally, antiarrhythmic drug classifications have been based on predominant drug actions. These classifications have clinical and some experimental utility but fail to consider the complicated effects that pathophysiologic influences and pharmacologic actions may have on active and passive cellular properties. Cluster analysis may allow the development of new classifications of arrhythmogenesis and antiarrhythmic drugs. The matrical concept has important clinical implications and suggest strategies for treating patients with cardiac rhythm disturbances.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources