Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul;71(1):98-104.
doi: 10.3171/jns.1989.71.1.0098.

Effect of the 21-aminosteroid U-74006F on cerebral vasospasm following subarachnoid hemorrhage

Affiliations

Effect of the 21-aminosteroid U-74006F on cerebral vasospasm following subarachnoid hemorrhage

M Zuccarello et al. J Neurosurg. 1989 Jul.

Abstract

The purpose of this study was to use a new 21-aminosteroid (U-74006F) with in vitro antioxidant and antilipolytic properties as a pharmacological probe to assess the role of lipid hydrolysis and peroxidation in a rabbit model of subarachnoid hemorrhage (SAH)-induced vasospasm. Cerebral angiograms were performed on 15 rabbits. Eighteen hours later, 1 cc/kg of autologous blood was infused into the cisterna magna of all 15 animals. Six rabbits received no treatment, six received U-74006F starting 30 minutes after SAH, and three rabbits received the vehicle for U-74006F starting 30 minutes after SAH. At 72 hours post-SAH, a second angiogram was obtained. Digital subtraction angiographic techniques were used to measure the diameter of and contrast material flow through the basilar artery. At 72 hours post-SAH, vasospasm was evident in all untreated and vehicle-treated rabbits. The diameter of and the flow through the basilar artery were significantly reduced 42.3% +/- 6.6% and 46.8% +/- 5.8%, respectively, below pre-SAH levels (means +/- standard error of the means). Treatment with U-74006F eliminated the SAH-induced vasospasm; in treated animals, both the flow through and the diameter of the basilar arteries were at pre-SAH levels. These findings indicate that: 1) membrane lipid changes (that is, hydrolysis with eicosanoid production and/or peroxidation) contribute to the chronic vasospasm resulting from SAH, and 2) U-74006F prevents the SAH-induced chronic vasospasm in this model by limiting these pathological membrane events.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources