Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2016 Jan;73(1):36-42.
doi: 10.1001/jamaneurol.2015.3145.

Frequency, Risk Factors, and Outcome of Coexistent Small Vessel Disease and Intracranial Arterial Stenosis: Results From the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) Trial

Collaborators, Affiliations
Clinical Trial

Frequency, Risk Factors, and Outcome of Coexistent Small Vessel Disease and Intracranial Arterial Stenosis: Results From the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) Trial

Hyung-Min Kwon et al. JAMA Neurol. 2016 Jan.

Abstract

Importance: Intracranial arterial stenosis (ICAS) and small vessel disease (SVD) may coexist. There are limited data on the frequency and risk factors for coexistent SVD and the effect of SVD on stroke recurrence in patients receiving medical treatment for ICAS.

Objective: To investigate the frequency and risk factors for SVD and the effect of SVD on stroke recurrence in patients with ICAS.

Design, setting, and participants: A post hoc analysis of the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) study, a prospective, multicenter clinical trial. Among 451 participants, 313 (69.4%) had baseline brain magnetic resonance imaging scans read centrally for SVD that was defined by any of the following: old lacunar infarction, grade 2 to 3 on the Fazekas scale (for high-grade white matter hyperintensities), or microbleeds. Patient enrollment in SAMMPRIS began November 25, 2008, and follow-up ended on April 30, 2013. Data analysis for the present study was performed from May 13, 2014, to July 29, 2015.

Main outcomes and measures: Risk factors in patients with vs without SVD and the association between SVD and other baseline risk factors with any ischemic stroke and ischemic stroke in the territory of the stenotic artery determined using proportional hazards regression.

Results: Of 313 patients, 155 individuals (49.5%) had SVD noted on baseline magnetic resonance imaging. Variables that were significantly higher in patients with SVD, reported as mean (SD), included age, 63.5 (10.5) years (P < .001), systolic blood pressure, 149 (22) mm Hg (P < .001), glucose level, 130 (50) mg/dL (P = .03), and lower Montreal Cognitive Assessment scores (median, ≥24 [interquartile range, 20-26]; P = .02).Other significant variables were the number of patients with diabetes mellitus (88 of 155 [56.8%]; P = .003), coronary artery disease (46 [29.7%]; P = .004), stroke before the qualifying event (59 [38.1%]; P < .001), old infarct in the territory of the stenotic intracranial artery (88 [56.8%]; P < .001), and receiving antithrombotic therapy at the time of the qualifying event (109 [70.3%]; P = .005). The association between SVD and any ischemic stroke was nearly significant in the direction of a higher risk (18 [23.7%]); P = .07) for patients with SVD. On bivariate analysis, SVD was not associated with an increased risk on multivariable analyses (hazard ratio, 1.7 [95% CI, 0.8-3.8]; P = .20). In addition, SVD was not associated with an increased risk of stroke in the territory on either bivariate or multivariable analyses.

Conclusions and relevance: Although SVD is common in patients with ICAS, the presence of SVD on baseline magnetic resonance imaging is not independently associated with an increased risk of stroke in patients with ICAS.

Trial registration: clinicaltrials.gov Identifier: NCT00576693.

PubMed Disclaimer

Comment in

References

    1. Arenillas JF. Intracranial atherosclerosis: current concepts. Stroke. 2011;42:S20–23. - PubMed
    1. Wong KS, Li H. Long-term mortality and recurrent stroke risk among Chinese stroke patients with predominant intracranial atherosclerosis. Stroke. 2003;34:2361–2366. - PubMed
    1. Kasner SE, Chimowitz MI, Lynn MJ, et al. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Circulation. 2006;113:555–63. - PubMed
    1. Igase M, Tabara Y, Igase K, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J. 2009;73:530–533. - PubMed
    1. Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke. 2002;33:1536–1540. - PubMed

Publication types

MeSH terms

Associated data