Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures
- PMID: 26621845
- PMCID: PMC4834950
- DOI: 10.1093/biostatistics/kxv048
Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures
Abstract
Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts.
Keywords: Air pollution; Birthweight; Environmental epidemiology; Kriging; Model uncertainty; Spatial model.
© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Similar articles
-
Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.Curr Environ Health Rep. 2017 Dec;4(4):472-480. doi: 10.1007/s40572-017-0160-1. Curr Environ Health Rep. 2017. PMID: 28983855 Review.
-
Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.Epidemiology. 2017 May;28(3):338-345. doi: 10.1097/EDE.0000000000000623. Epidemiology. 2017. PMID: 28099267 Free PMC article.
-
Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.Res Rep Health Eff Inst. 2010 Dec;(152):5-80; discussion 81-91. Res Rep Health Eff Inst. 2010. PMID: 21409949
-
Measurement error in epidemiologic studies of air pollution based on land-use regression models.Am J Epidemiol. 2013 Oct 15;178(8):1342-6. doi: 10.1093/aje/kwt127. Epub 2013 Sep 5. Am J Epidemiol. 2013. PMID: 24105967
-
Methods to account for uncertainties in exposure assessment in studies of environmental exposures.Environ Health. 2019 Apr 8;18(1):31. doi: 10.1186/s12940-019-0468-4. Environ Health. 2019. PMID: 30961632 Free PMC article. Review.
Cited by
-
Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.Curr Environ Health Rep. 2017 Dec;4(4):472-480. doi: 10.1007/s40572-017-0160-1. Curr Environ Health Rep. 2017. PMID: 28983855 Review.
-
Split and combine simulation extrapolation algorithm to correct geocoding coarsening of built environment exposures.Stat Med. 2022 May 20;41(11):1932-1949. doi: 10.1002/sim.9338. Epub 2022 Jan 31. Stat Med. 2022. PMID: 35098584 Free PMC article.
-
Measurement Error and Environmental Epidemiology: a Policy Perspective.Curr Environ Health Rep. 2017 Mar;4(1):79-88. doi: 10.1007/s40572-017-0125-4. Curr Environ Health Rep. 2017. PMID: 28138941 Free PMC article. Review.
-
Accounting for measurement error to assess the effect of air pollution on omic signals.PLoS One. 2020 Jan 2;15(1):e0226102. doi: 10.1371/journal.pone.0226102. eCollection 2020. PLoS One. 2020. PMID: 31896134 Free PMC article.
-
A Bespoke Instrumental Variable Approach to Correction for Exposure Measurement Error.Am J Epidemiol. 2022 Oct 20;191(11):1954-1961. doi: 10.1093/aje/kwac133. Am J Epidemiol. 2022. PMID: 35916388 Free PMC article.
References
-
- Alexeeff S. E., Schwartz J., Kloog I., Chudnovsky A., Koutrakis P., Coull B. A. (2014). Consequences of Kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data. Journal of Exposure Science and Environmental Epidemiology 1–7. - PMC - PubMed
-
- Brauer M., Hoek G., van Vliet P., Meliefste K., Fischer P., Gehring U., Heinrich J., Cyrys J., Bellander T., Lewne M.. and others (2003). Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 14(2), 228–239. - PubMed
-
- Brook R. D., Rajagopalan S., Pope C. A. III, Brook J. R., Bhatnagar A., Diez-Roux A. V., Holguin F., Hong Y., Luepker R. V., Mittleman M. A.. and others (2010). A.H.A. scientific statement. particulate matter air pollution and cardiovascular disease. Circulation 121, 2331–2378. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical