Quantifying the heritability of glioma using genome-wide complex trait analysis
- PMID: 26625949
- PMCID: PMC4667278
- DOI: 10.1038/srep17267
Quantifying the heritability of glioma using genome-wide complex trait analysis
Abstract
Genome-wide association studies (GWAS) have successfully identified a number of common single-nucleotide polymorphisms (SNPs) influencing glioma risk. While these SNPs only explain a small proportion of the genetic risk it is unclear how much is left to be detected by other, yet to be identified, common SNPs. Therefore, we applied Genome-Wide Complex Trait Analysis (GCTA) to three GWAS datasets totalling 3,373 cases and 4,571 controls and performed a meta-analysis to estimate the heritability of glioma. Our results identify heritability estimates of 25% (95% CI: 20-31%, P = 1.15 × 10(-17)) for all forms of glioma - 26% (95% CI: 17-35%, P = 1.05 × 10(-8)) for glioblastoma multiforme (GBM) and 25% (95% CI: 17-32%, P = 1.26 × 10(-10)) for non-GBM tumors. This is a substantial increase from the genetic variance identified by the currently identified GWAS risk loci (~6% of common heritability), indicating that most of the heritable risk attributable to common genetic variants remains to be identified.
Figures
References
-
- Sanson M. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27, 4150–4 (2009). - PubMed
-
- Weller M. et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27, 5743–50 (2009). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical