Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;3(1):289-300.
doi: 10.1021/ct6002719.

Density Functionals for Noncovalent Interaction Energies of Biological Importance

Affiliations

Density Functionals for Noncovalent Interaction Energies of Biological Importance

Yan Zhao et al. J Chem Theory Comput. 2007 Jan.

Abstract

Forty density functionals and one wavefunction method are assessed against a recently published database of accurate noncovalent interaction energies of biological importance. The comparison shows that two newly developed density functional theory (DFT) methods, PWB6K and M05-2X, give the best performance for this benchmark database of 22 noncovalent complexes, including both hydrogen-bonding and dispersion-dominated complexes. In contrast, the more popular B3LYP and PBEh functionals fail to describe the interactions in the dispersion-dominated complexes. The local spin density approximation and BHandH functionals give good performance for dispersion-dominated interactions at the expense of a large error for hydrogen bonding. PWB6K and M05-2X constitute a new generation of DFT methods based on simultaneously optimized exchange and correlation functionals that include kinetic energy density in both the exchange and correlation functional, and the present study confirms that they have greatly improved performance for noncovalent interactions as compared to previous DFT methods. We interpret this as being due to an improved treatment of medium-range correlation effects by the exchange-correlation functional. We recommend the PWB6K and M05-2X methods for investigating large biological systems and soft materials.

PubMed Disclaimer