Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways
- PMID: 26627545
- PMCID: PMC4860110
- DOI: 10.1016/j.jaci.2015.10.017
Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways
Abstract
Background: The lung has a diverse microbiome that is modest in biomass. This microbiome differs in asthmatic patients compared with control subjects, but the effects of clinical characteristics on the microbial community composition and structure are not clear.
Objectives: We examined whether the composition and structure of the lower airway microbiome correlated with clinical characteristics of chronic persistent asthma, including airflow obstruction, use of corticosteroid medications, and presence of airway eosinophilia.
Methods: DNA was extracted from endobronchial brushings and bronchoalveolar lavage fluid collected from 39 asthmatic patients and 19 control subjects, along with negative control samples. 16S rRNA V4 amplicon sequencing was used to compare the relative abundance of bacterial genera with clinical characteristics.
Results: Differential feature selection analysis revealed significant differences in microbial diversity between brush and lavage samples from asthmatic patients and control subjects. Lactobacillus, Pseudomonas, and Rickettsia species were significantly enriched in samples from asthmatic patients, whereas Prevotella, Streptococcus, and Veillonella species were enriched in brush samples from control subjects. Generalized linear models on brush samples demonstrated oral corticosteroid use as an important factor affecting the relative abundance of the taxa that were significantly enriched in asthmatic patients. In addition, bacterial α-diversity in brush samples from asthmatic patients was correlated with FEV1 and the proportion of lavage eosinophils.
Conclusion: The diversity and composition of the bronchial airway microbiome of asthmatic patients is distinct from that of nonasthmatic control subjects and influenced by worsening airflow obstruction and corticosteroid use.
Keywords: 16S ribosomal RNA; Asthma; FEV(1); bacteria; corticosteroids; microbiome.
Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Figures
References
-
- Baughman RP, Thorpe JE, Staneck J, Rashkin M, Frame PT. Use of the protected specimen brush in patients with endotracheal or tracheostomy tubes. Chest. 1987;91(2):233–6. - PubMed
-
- Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, Brasholt M, Heltberg A, Vissing NH, Thorsen SV, Stage M, Pipper CB. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357(15):1487–95. - PubMed
-
- Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, von Mutius E. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869–77. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
