Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan;73(1):20-30.
doi: 10.1001/jamapsychiatry.2015.2123.

Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities

Collaborators, Affiliations

Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities

Debra D'Angelo et al. JAMA Psychiatry. 2016 Jan.

Abstract

Importance: The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI).

Objectives: To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD.

Design, setting, and participants: This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives.

Main outcomes and measures: Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data.

Results: Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies.

Conclusions and relevance: The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: None reported.

Figures

Figure 1
Figure 1. Distribution of IQ Measures in BP4–BP5 16p11.2 Duplication and Deletion Carriers and Intrafamilial Noncarrier Control Individuals
A–C, Box plots. Bold line indicates median; circles, outliers; dot inside the box, mean; top of each box, the 75th percentile (Q3); bottom of each box, 25th percentile (Q1); upper end of the error bar, the highest observed data value within the span from Q3 to Q3 + 1.5 times the interquartile range (IQR) (calculated as Q3 – Q1); the lower end, the lowest observed data value within the span from Q1 to Q1 – 1.5 times the IQR; shading, intellectual disability range (IQ ≤ 70); and dotted line, population mean (IQ = 100). The numbers below the graphs represent the number of duplication and deletion carriers in each group. D and E, Density plots. Increased variance is seen in the duplication group with a significant excess of low- and high-functioning duplication carriers compared with the deletion group, which was ascertained with the same method. The Full-Scale IQ (FSIQ) of probands with autism spectrum disorder (ASD) is significantly lower in duplication compared with deletion carriers. a P < .05. b P < .1.
Figure 2
Figure 2. Body Mass Index (BMI) and Head Circumference (HC) z Scores in Deletion and Duplication Carriers and Intrafamilial Control Individuals
Density plots depict cross-sectional data. Only data from probands were used for deletion and duplication density plots. Stratification of z scores by 6 age windows used the combined longitudinal and cross-sectional data. In the 3 youngest age windows, we compared the mean z scores (data markers; error bars indicate SEs of the estimates in linear mixed models) of deletions and duplications in each individual age window with the population mean (z score, 0). In the 3 oldest age windows where familial controls were available, we compared the mean z score for deletions and duplications in each individual age window with their familial controls. Deletion and duplication carriers demonstrate low BMI during infancy. After 2 years of age, the BMI z score of deletion carriers increases and remains low in duplication carriers. NA indicates not available. a P < .05, carriers vs normative data, using themethod of Gao et al for the P value calculation to account for the multiple tests across multiple age windows. b P < .05, carriers vs controls, using the method of Gao et al for the P value calculation to account for the multiple tests across multiple age windows.

Comment in

References

    1. Weiss LA, Shen Y, Korn JM, et al. Autism Consortium. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358(7):667–675. - PubMed
    1. Kumar RA, Kara Mohamed S, Sudi J, et al. Recurrent 16p11.2microdeletions in autism. Hum Mol Genet. 2008;17(4):628–638. - PubMed
    1. Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–488. - PMC - PubMed
    1. McCarthy SE, Makarov V, Kirov G, et al. Wellcome Trust Case Control Consortium. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009;41(11):1223–1227. - PMC - PubMed
    1. Zufferey F, Sherr EH, Beckmann ND, et al. Simons VIP Consortium: 16p11.2 European Consortium. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet. 2012;49(10):660–668. - PMC - PubMed

Publication types

MeSH terms

Supplementary concepts