Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 11;55(2):811-4.
doi: 10.1002/anie.201508706. Epub 2015 Dec 2.

Knots "Choke Off" Polymers upon Stretching

Affiliations

Knots "Choke Off" Polymers upon Stretching

Tim Stauch et al. Angew Chem Int Ed Engl. .

Abstract

Long polymer chains inevitably get tangled into knots. Like macroscopic ropes, polymer chains are substantially weakened by knots and the rupture point is always located at the "entry" or "exit" of the knot. However, these phenomena are only poorly understood at a molecular level. Here we show that when a knotted polyethylene chain is tightened, most of the stress energy is stored in torsions around the curved part of the chain. The torsions act as "work funnels" that effectively localize mechanical stress in the immediate vicinity of the knot. As a result, the knot "chokes" the chain at its entry or exit, thus leading to bond rupture at much lower forces than those needed to break a linear, unknotted chain. Our work not only explains the weakening of the polymer chain and the position of the rupture point, but more generally demonstrates that chemical bonds do not have to be extensively stretched to be broken.

Keywords: ab initio calculations; computational chemistry; density functional calculations; mechanical properties; polymers.

PubMed Disclaimer

Publication types

LinkOut - more resources