Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 2;17(3):233-8.
doi: 10.1002/cbic.201500533. Epub 2016 Jan 8.

Parallel Post-Polyketide Synthase Modification Mechanism Involved in FD-891 Biosynthesis in Streptomyces graminofaciens A-8890

Affiliations

Parallel Post-Polyketide Synthase Modification Mechanism Involved in FD-891 Biosynthesis in Streptomyces graminofaciens A-8890

Fumitaka Kudo et al. Chembiochem. .

Abstract

To isolate a key polyketide biosynthetic intermediate for the 16-membered macrolide FD-891 (1), we inactivated two biosynthetic genes coding for post-polyketide synthase (PKS) modification enzymes: a methyltransferase (GfsG) and a cytochrome P450 (GfsF). Consequently, FD-892 (2), which lacks the epoxide moiety at C8-C9, the hydroxy group at C10, and the O-methyl group at O-25 of FD-891, was isolated from the gfsF/gfsG double-knockout mutant. In addition, 25-O-methyl-FD-892 (3) and 25-O-demethyl-FD-891 (4) were isolated from the gfsF and gfsG mutants, respectively. We also confirmed that GfsG efficiently catalyzes the methylation of 2 and 4 in vitro. Further, GfsF catalyzed the epoxidation of the double bond at C8-C9 of 2 and 3 and subsequent hydroxylation at C10, to afford 4 and 1, respectively. These results suggest that a parallel post-PKS modification mechanism is involved in FD-891 biosynthesis.

Keywords: antibiotics; biosynthesis; methyltransferases; natural products; polyketides.

PubMed Disclaimer

Publication types

MeSH terms