Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan;28(1):88-96.
doi: 10.1097/CCO.0000000000000243.

Tumor microenvironment in mycosis fungoides and Sézary syndrome

Affiliations
Review

Tumor microenvironment in mycosis fungoides and Sézary syndrome

Belen Rubio Gonzalez et al. Curr Opin Oncol. 2016 Jan.

Abstract

Purpose of review: Mycosis fungoides and Sézary syndrome arise from malignant T cells that reside in skin, and subsequently are capable of circulating between skin, lymph nodes, and blood. The pathophysiologic mechanisms that cause and result in different behaviors of the skin-homing-malignant T cells in different stages of cutaneous T-cell lymphoma (CTCL) are still unknown. It is hypothesized that the skin microenvironment which is composed by various immune cell subsets as well as their spatial distribution and T-cell interaction through different chemokines and cytokines have an important role in the development and pathogenesis of CTCL and will be addressed in this chapter.

Recent findings: Recent studies have discovered that malignant T cells in Sézary syndrome are of the central memory T-cell subset, whereas those in mycosis fungoides are nonrecirculating skin-resident effector memory T cells, and have shown a protumorigenic role of mast cells and macrophages in CTCL. In addition, it has been observed that malignant T cells may exhibit features of one of these three distinct phenotypes (forkhead box P3 + regulatory T-cell phenotype, Th2 phenotype, and Th17 phenotype) and are functionally exhausted through an increased expression of certain coinhibitory molecules, such as programmed death-1.

Summary: All these new findings could assist in the development of novel targeted therapies for CTCL.

PubMed Disclaimer

MeSH terms