Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;39(1):123-33.
doi: 10.1007/s13246-015-0407-9. Epub 2015 Dec 3.

The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation

Affiliations

The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation

Saeed Miramini et al. Australas Phys Eng Sci Med. 2016 Mar.

Abstract

Interfragmentary movement (IFM) at the fracture site plays an important role in fracture healing, particularly during its early stage, via influencing the mechanical microenvironment of mesenchymal stem cells within the fracture callus. However, the effect of changes in IFM resulting from the changes in the configuration of locking plate fixation on cell differentiation has not yet been fully understood. In this study, mechanical experiments on surrogate tibia specimens, manufactured from specially formulated polyurethane, were conducted to investigate changes in IFM of fractures under various locking plate fixation configurations and loading magnitudes. The effect of the observed IFM on callus cell differentiation was then further studied using computational simulation. We found that during the early stage, cell differentiation in the fracture callus is highly influenced by fracture gap size and IFM, which in turn, is highly sensitive to locking plate fixation configuration. The computational model predicted that a small gap size (e.g. 1 mm) under a relatively flexible configuration of locking plate fixation (larger bone-plate distances and working lengths) could experience excessive strain and fluid flow within the fracture site, resulting in excessive fibrous tissue differentiation and delayed healing. By contrast, a relatively flexible configuration of locking plate fixation was predicted to improve cartilaginous callus formation and bone healing for a relatively larger gap size (e.g. 3 mm). If further confirmed by animal and human studies, the research outcome of this paper may have implications for orthopaedic surgeons in optimising the application of locking plate fixations for fractures in clinical practice.

Keywords: Computational simulation; Fracture healing; Locking plate fixation; Mechanical testing; Mesenchymal stem cell differentiation; Osteoporosis.

PubMed Disclaimer

Publication types

LinkOut - more resources