Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan;18(1):28-37.
doi: 10.1002/ejhf.444. Epub 2015 Dec 3.

Non-steroidal mineralocorticoid receptor antagonism for the treatment of cardiovascular and renal disease

Affiliations
Free article
Review

Non-steroidal mineralocorticoid receptor antagonism for the treatment of cardiovascular and renal disease

Peter Bramlage et al. Eur J Heart Fail. 2016 Jan.
Free article

Erratum in

Abstract

Pharmaceutical antagonism of the mineralocorticoid receptor (MR) can protect against organ damage caused by elevated aldosterone levels in patients experiencing heart failure (HF), chronic kidney disease (CKD), primary aldosteronism, and hypertension. While traditional steroid-based MR antagonists effectively reduce mortality rates and extend patient survival, their broad application has been limited by significant side effects, most notably hyperkalaemia. Recently, finerenone (BAY 94-8862) has emerged as a next-generation non-steroidal dihydropyridine-based MR antagonist designed to minimize off-target effects while maintaining potent efficacy. In this review, the outcomes of finerenone therapy in several diseases associated with MR activity are explored. The (pre-) clinical efficacy of finerenone is compared with that of traditional steroid-based MR antagonists. Finally, recent and ongoing clinical trials using finerenone to treat chronic HF, CKD, and diabetic nephropathy are discussed. Taken together, pre-clinical and clinical evidence suggests that finerenone may achieve equivalent organ-protective effects with reduced levels of electrolyte disturbance compared with traditional steroid-based MR antagonists. This supports further clinical development of finerenone for the treatment of cardiovascular and renal disease.

Keywords: ARTS; Antagonist; BAY 94-8862; Disease; Failure; Finerenone; Heart; Kidney; Mineralocorticoid; Receptor.

PubMed Disclaimer

MeSH terms