Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Jan;25(1):105-13.
doi: 10.1158/1055-9965.EPI-15-0687. Epub 2015 Dec 4.

Quantifying the Role of Circulating Unconjugated Estradiol in Mediating the Body Mass Index-Breast Cancer Association

Affiliations
Randomized Controlled Trial

Quantifying the Role of Circulating Unconjugated Estradiol in Mediating the Body Mass Index-Breast Cancer Association

Catherine Schairer et al. Cancer Epidemiol Biomarkers Prev. 2016 Jan.

Abstract

Background: Higher body mass index (BMI) and circulating estrogen levels each increase postmenopausal breast cancer risk, particularly estrogen receptor-positive (ER(+)) tumors. Higher BMI also increases estrogen production.

Methods: We estimated the proportion of the BMI-ER(+) breast cancer association mediated through estrogen in a case-control study nested within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Participants included 143 women with invasive ER(+) breast cancer and 268 matched controls, all postmenopausal and never having used hormone therapy at baseline. We used liquid chromatography-tandem mass spectrometry to measure 15 estrogens and estrogen metabolites in baseline serum. We calculated BMI from self-reported height and weight at baseline. We estimated the mediating effect of unconjugated estradiol on the BMI-ER(+) breast cancer association using Aalen additive hazards and Cox regression models.

Results: All estrogens and estrogen metabolites were statistically significantly correlated with BMI, with unconjugated estradiol most strongly correlated [Pearson correlation (r) = 0.45]. Approximately 7% to 10% of the effect of overweight, 12% to 15% of the effect of obesity, and 19% to 20% of the effect of a 5 kg/m(2) BMI increase on ER(+) breast cancer risk was mediated through unconjugated estradiol. The BMI-breast cancer association, once adjusted for unconjugated estradiol, was not modified by further adjustment for two metabolic ratios statistically significantly associated with both breast cancer and BMI.

Conclusion: Circulating unconjugated estradiol levels partially mediate the BMI-breast cancer association, but other potentially important estrogen mediators (e.g., bioavailable estradiol) were not evaluated.

Impact: Further research is required to identify mechanisms underlying the BMI-breast cancer association.

PubMed Disclaimer

References

    1. Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012;104:326–39. - PMC - PubMed
    1. Lahmann PH, Schulz M, Hoffmann K, Boeing H, Tjonneland A, Olsen A, et al. Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC). Br J Cancer. 2005;93:582–9. - PMC - PubMed
    1. Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J, Kuller L, et al. Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control. 2002;13:741–51. - PubMed
    1. Slattery ML, Sweeney C, Edwards S, Herrick J, Baumgartner K, Wolff R, et al. Body size, weight change, fat distribution and breast cancer risk in Hispanic and non-Hispanic white women. Breast Cancer Res Treat. 2007;102:85–101. - PubMed
    1. Suzuki R, Rylander-Rudqvist T, Ye W, Saji S, Wolk A. Body weight and postmenopausal breast cancer risk defined by estrogen and progesterone receptor status among Swedish women: A prospective cohort study. Int J Cancer. 2006;119:1683–9. - PubMed

Publication types

MeSH terms