Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun;124(6):733-9.
doi: 10.1289/ehp.1510185. Epub 2015 Dec 8.

Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes

Affiliations

Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes

Joseph G Allen et al. Environ Health Perspect. 2016 Jun.

Abstract

Background: There are > 7,000 e-cigarette flavors currently marketed. Flavoring chemicals gained notoriety in the early 2000s when inhalation exposure of the flavoring chemical diacetyl was found to be associated with a disease that became known as "popcorn lung." There has been limited research on flavoring chemicals in e-cigarettes.

Objective: We aimed to determine if the flavoring chemical diacetyl and two other high-priority flavoring chemicals, 2,3-pentanedione and acetoin, are present in a convenience sample of flavored e-cigarettes.

Methods: We selected 51 types of flavored e-cigarettes sold by leading e-cigarette brands and flavors we deemed were appealing to youth. E-cigarette contents were fully discharged and the air stream was captured and analyzed for total mass of diacetyl, 2,3-pentanedione, and acetoin, according to OSHA method 1012.

Results: At least one flavoring chemical was detected in 47 of 51 unique flavors tested. Diacetyl was detected above the laboratory limit of detection in 39 of the 51 flavors tested, ranging from below the limit of quantification to 239 μg/e-cigarette. 2,3-Pentanedione and acetoin were detected in 23 and 46 of the 51 flavors tested at concentrations up to 64 and 529 μg/e-cigarette, respectively.

Conclusion: Because of the associations between diacetyl and bronchiolitis obliterans and other severe respiratory diseases observed in workers, urgent action is recommended to further evaluate this potentially widespread exposure via flavored e-cigarettes.

Citation: Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P, Stewart JH, Christiani DC. 2016. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ Health Perspect 124:733-739; http://dx.doi.org/10.1289/ehp.1510185.

PubMed Disclaimer

Conflict of interest statement

The authors declare they have no actual or potential competing financial interests.

Figures

Figure 1
Figure 1
Schematic of sampling apparatus.
Figure 2
Figure 2
Boxplots showing the median (horizontal line in box), interquartile range (shaded box), and 1.5 times the interquartile range (vertical lines) of e-cigarette sample masses, including replicates, by flavor type for diacetyl, 2,3-pentanedione, and acetoin. Samples outside 1.5 times the interquartile range are shown as dots. The two highest concentrations for each chemical are not shown.

Comment in

References

    1. ACGIH (American Conference of Governmental Industrial Hygienists) In: Documentation of the Threshold Limit Values and Biological Exposure Indices. Cincinnati, OH: ACGIH; 2014. Diacetyl.
    1. Barrington-Trimis JL, Samet JM, McConnell R. Flavorings in electronic cigarettes, an unrecognized respiratory health hazard? JAMA. 2014;312(23):2493–2494. - PMC - PubMed
    1. Behar RZ, Davis B, Wang Y, Bahl V, Lin S, Talbot P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol in Vitro. 2014;28:198–208. - PubMed
    1. Bekki K, Uchiyama S, Ohta K, Inaba Y, Nakagome H, Kunugita N. 2014. Carbonyl compounds generated from electronic cigarettes. Int J Environ Res Public Health 11 11192 11200, doi:10.3390/ijerph111111192 - DOI - PMC - PubMed
    1. Bell K, Keane H. All gates lead to smoking: the ‘gateway theory’, e-cigarettes and the remaking of nicotine. Soc Sci Med. 2014;119:45–52. - PubMed

Publication types

MeSH terms

LinkOut - more resources