Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 5:770:16-24.
doi: 10.1016/j.ejphar.2015.11.048. Epub 2015 Nov 28.

Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia

Affiliations

Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia

James Cheng-Chung Wei et al. Eur J Pharmacol. .

Abstract

Microglia are the primary immune cells that contribute to neuroinflammation by releasing various proinflammatory cytokines and neurotoxins in the brain. Microglia-mediated neuroinflammation is one of the key characteristics of Alzheimer's disease (AD). Therefore, inhibitory reagents that prevent microglial activation may be used as potential therapeutic agents for treating AD. Recently, many studies have been performed to determine the bioactivities of green tea polyphenol epigallocatechin-3-gallate (EGCG), an efficient antioxidant that prevents neuroinflammation. However, limited information is available on the effects of EGCG on microglia-mediated neuroinflammation. In this study, we investigated the inhibitory effects of EGCG on amyloid β (Aβ)-induced microglial activation and neurotoxicity. Our results indicated that EGCG significantly suppressed the expression of tumor necrosis factor α (TNFα), interleukin-1β, interleukin-6, and inducible nitric oxide synthase (iNOS) in Aβ-stimulated EOC 13.31 microglia. EGCG also restored the levels of intracellular antioxidants nuclear erythroid-2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thus inhibiting reactive oxygen species-induced nuclear factor-κB (NF-κB) activation after Aβ treatment. Furthermore, EGCG effectively protected neuro-2a neuronal cells from Aβ-mediated, microglia-induced cytotoxicity by inhibiting mitogen-activated protein kinase-dependent, Aβ-induced release of TNFα. Taken together, our findings suggested that EGCG suppressed Aβ-induced neuroinflammatory response of microglia and protected against indirect neurotoxicity. These results suggest that EGCG is a possible therapeutic agent for preventing Aβ-induced inflammatory neurodegeneration.

Keywords: Amyloid β; Epigallocatechin gallate; Microglia; Neuroinflammation; Tumor necrosis factor α.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources