Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;132(1):59-69.
doi: 10.1159/000442679. Epub 2015 Dec 9.

Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy

Affiliations

Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy

Carlamaria Zoja et al. Nephron. 2016.

Abstract

Background/aims: A critical involvement of the endocannabinoid/cannabinoid receptor system in diabetes and its complications has been recognized. Experimental evidence suggested that activation of the cannabinoid receptor type 2 (CB2), which is expressed in the kidney by podocytes and inflammatory cells, had a protective role in early streptozotocin-induced type 1 diabetes in mice. No experimental evidence is so far available on the effects of CB2 agonists in type 2 diabetes. In this study, we investigated the effects of a CB2 agonist given at a phase of overt disease on renal functional and structural changes in BTBR ob/ob mice, a model of type 2 diabetic nephropathy.

Methods: BTBR ob/ob mice received, from 10 to 21 weeks of age, vehicle, the selective CB2 agonist HU910, or lisinopril used as standard therapy for comparison. BTBR wild-type mice served as controls.

Results: Treatment with CB2 agonist reduced progressive albuminuria of BTBR ob/ob mice to a similar extent as ACE inhibitor. The antiproteinuric effect of CB2 agonist was associated with the amelioration of the defective nephrin expression in podocytes of diabetic mice. CB2 agonist limited mesangial matrix expansion, fibronectin accumulation and sclerosis. Glomerular infiltration of Mac-2-positive monocytes/machrophages was attenuated by CB2 agonist, at least in part due to the drug's ability to reduce MCP-1 chemotactic signals. Renoprotective effects of CB2 were similar to those achieved by ACE inhibitor.

Conclusion: These results suggest that CB2 agonism is a potential option to be added to the available therapeutic armamentarium for type 2 diabetic nephropathy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources