Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 9:8:759.
doi: 10.1186/s13104-015-1703-x.

Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves

Affiliations

Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves

Thaddée Boudjeko et al. BMC Res Notes. .

Abstract

Background: Many plant polysaccharides have shown high antioxidant and immunostimulating properties and can be explored as novel molecules with biological properties that can potentially improve immune function. The objective of this work was to characterize soluble and cell wall polysaccharides isolated from the stem bark of Allanblackia floribunda and Chromolaena odorata leaves and to evaluate their antioxidant and immunomodulatory properties.

Methods: Three polysaccharide fractions: soluble polysaccharides (PoS), pectins (Pec) and hemicelluloses (Hem) were extracted from A. floribunda stem bark and C. odorata leaves. These samples were analysed for their proteins, phenolic compounds and total sugar contents. The monosaccharide composition was determined by gas chromatography and arabinogalactan proteins content in PoS was evaluated by rocket electrophoresis. The in vitro antioxidant activities were evaluated by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis-3-éthylbenzylthiazoline-6-sulphonic acid (ABTS) radical scavenging assays and ferrous ions chelating activity. Immunomodulatory activities were performed on the peripheral blood mononuclear cells (PBMCs) using proliferation and enzyme linked immunospot (ELISPOT) method to determine the production of an interferon-gamma.

Results: The characterization of the various fractions showed varied metabolites in each plant. In PoS fractions, Ara and Gal were the major monosaccharides found, indicating that arabinogalactans are the primary macromolecules. Hem fractions contained predominantly Xyl and GalA for A. floribunda and Xyl (upto 80 %) for and C. odorata. A. floribunda Hem fraction and C. odorata PoS fraction showed significant DPPH and ABTS radical scavenging activities and immunostimulatory activity via stimulation of PBMC and production of IFN-γ in a dose-dependent manner.

Conclusion: The results obtained from this study support the ethnomedicinal use of the stem bark of A. floribunda and leaves of C. odorata. Further research is necessary to have supporting evidence that the antioxidative and immunomodulative activities of these fractions are really connected to the polysaccharides and not polyphenols.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Total protein content of polysaccharide isolate from Allanblackia floribunda stem bark and Chromolaena odorata leaves by the Bradford method
Fig. 2
Fig. 2
Total phenolic content of polysaccharide isolate from Allanblackia floribunda stem bark and Chromolaena odorata leaves by the Folin–Ciocalteu method
Fig. 3
Fig. 3
Total sugar content of polysaccharide isolate from Allanblackia floribunda stem bark and Chromolaena odorata leaves by the phenol–sulfuric acid method
Fig. 4
Fig. 4
Quantification of total arabinogalactan–proteins in soluble polysaccharide fractions of Allanblackia floribunda stem bark (a) and Chromolaena odorata leaves (b) by rocket electrophoresis. Arabic gum AGP (1 mg/mL) was used as standard
Fig. 5
Fig. 5
Monosaccharide molar composition of polysaccharide isolate from Allanblackia floribunda stem bark (a) and Chromolaena odorata leaves (b)
Fig. 6
Fig. 6
DPPH-free radical scavenging activity (%) of polysaccharide isolate from Allanblackia floribunda stem bark (a) and Chromolaena odorata leaves (b). Asc: Ascorbic acid; Cat: Catechin
Fig. 7
Fig. 7
ABTS scavenging activity (%) of polysaccharide isolate from Allanblackia floribunda stem bark (a) and Chromolaena odorata leaves (b). Cat: Catechin
Fig. 8
Fig. 8
Ferrous ion chelating capacity (%) of polysaccharide isolate from Allanblackia floribunda stem bark (a) and Chromolaena odorata leaves (b)
Fig. 9
Fig. 9
Effects of polysaccharide fractions on cell proliferation and interferon production by ELISPOT. Mal Ag: malaria antigen

Similar articles

Cited by

References

    1. Aboughe-Angone S, Nguema-Ona E, Boudjeko T, Driouich A. Plant cell wall polysaccharides as immmunomodulators of the immune system. Cur Top Phytochem. 2011;10:1–16.
    1. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002;60:258–274. doi: 10.1007/s00253-002-1076-7. - DOI - PubMed
    1. Kouakou K, Schepetkin IA, Yapi A, Kirpotina LN, Jutila MA, Quinn MT. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol. 2013;146(1):232–242. doi: 10.1016/j.jep.2012.12.037. - DOI - PMC - PubMed
    1. Thangam R, Sathuvan M, Poongodi A, Sureshe V, Pazhanichamy K, Sivasubramanian S, Kanipandian N, Ganesan N, Rengasamy R, Thirumurugan R, Kannan S. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr Polym. 2014;107:138–150. doi: 10.1016/j.carbpol.2014.02.039. - DOI - PubMed
    1. Yang X, Wang R, Zhang S, Zhu W, Tang J, Liu J, Chen P, Zhang D, Yea W, Zheng Y. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr Polym. 2014;101:386–391. doi: 10.1016/j.carbpol.2013.09.038. - DOI - PubMed

MeSH terms