Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2015 Sep-Oct;88(5):455-70.
doi: 10.1086/682216. Epub 2015 Jun 10.

Stunted by Developing in Hypoxia: Linking Comparative and Model Organism Studies

Affiliations
Comparative Study

Stunted by Developing in Hypoxia: Linking Comparative and Model Organism Studies

Jon F Harrison et al. Physiol Biochem Zool. 2015 Sep-Oct.

Abstract

Animals develop in atmospheric hypoxia in a wide range of habitats, and tissues may experience O2 limitation of ATP production during postembryonic development if O2 supply structures do not keep pace with growing O2 demand during ontogeny. Most animal species are stunted by postembryonic development in hypoxia, showing reduced growth rates and size in moderate hypoxia (5-15 kPa Po2). In mammals, the critical Po2 that limits resting metabolic rate also falls in this same moderate hypoxic range, so stunted growth may simply be due to hypoxic limits on ATP production. However, in most invertebrates and at least some lower vertebrates, hypoxic stunting occurs at Po2 values well above those that limit resting metabolism. Studies with diverse model organisms have identified multiple homologous O2-sensing signaling pathways that can inhibit feeding and growth during moderate hypoxia. Together, these comparative and model organism-based studies suggest that hypoxic stunting of growth and size can occur as programmed inhibition of growth, often by inhibition of insulin stimulation of growth processes. Furthermore, there is increasing evidence that these same O2 signaling pathways can be utilized during normal animal development to ensure matching of O2 supply and demand structures and in mediation of variation in animal performance.

PubMed Disclaimer

Publication types

LinkOut - more resources