Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 Jul 17;251(1-2):1-7.
doi: 10.1016/0014-5793(89)81417-6.

EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation?

Affiliations
Free article
Review

EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation?

J Engel. FEBS Lett. .
Free article

Abstract

Multidomain proteins of the extracellular matrix (ECM) play an important role in development and maintenance of cellular organization and in tissue repair. Several ECM proteins such as laminin, tenascin and thrombospondin contain domains with homology to epidermal growth factor (EGF) and exhibit growth promoting activity. The mitogenic activity of laminin is restricted to a fragment which consists of about 25 repeating domains with partial homology to EGF and comprises the rod-like inner regions of the three short arms of the four armed molecule. The mitogenic activity does not correlate with promotion of cell attachment and neurite outgrowth for which major functional sites have been found in other regions of the laminin molecule. It is suggested that EGF-like domains in laminin, in other ECM proteins and in the extracellular portions of some membrane proteins are signals for cellular growth and differentiation. Because they are integral parts of large molecules and often of supramolecular assemblies these domains are well suited to stimulate neighboring cells in a specific and vectorial way. This concept of localized growth or differentiation signals offers an attractive mechanism for the regulation of cellular development.

PubMed Disclaimer

LinkOut - more resources