Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2016 Feb 18;127(7):938-47.
doi: 10.1182/blood-2015-09-671834. Epub 2015 Dec 15.

Reduced-intensity transplantation for lymphomas using haploidentical related donors vs HLA-matched unrelated donors

Affiliations
Clinical Trial

Reduced-intensity transplantation for lymphomas using haploidentical related donors vs HLA-matched unrelated donors

Abraham S Kanate et al. Blood. .

Abstract

We evaluated 917 adult lymphoma patients who received haploidentical (n = 185) or HLA-matched unrelated donor (URD) transplantation either with (n = 241) or without antithymocyte globulin (ATG; n = 491) following reduced-intensity conditioning regimens. Haploidentical recipients received posttransplant cyclophosphamide-based graft-versus-host disease (GVHD) prophylaxis, whereas URD recipients received calcineurin inhibitor-based prophylaxis. Median follow-up of survivors was 3 years. The 100-day cumulative incidence of grade III-IV acute GVHD on univariate analysis was 8%, 12%, and 17% in the haploidentical, URD without ATG, and URD with ATG groups, respectively (P = .44). Corresponding 1-year rates of chronic GVHD on univariate analysis were 13%, 51%, and 33%, respectively (P < .001). On multivariate analysis, grade III-IV acute GVHD was higher in URD without ATG (P = .001), as well as URD with ATG (P = .01), relative to haploidentical transplants. Similarly, relative to haploidentical transplants, risk of chronic GVHD was higher in URD without ATG and URD with ATG (P < .0001). Cumulative incidence of relapse/progression at 3 years was 36%, 28%, and 36% in the haploidentical, URD without ATG, and URD with ATG groups, respectively (P = .07). Corresponding 3-year overall survival (OS) was 60%, 62%, and 50% in the 3 groups, respectively, with multivariate analysis showing no survival difference between URD without ATG (P = .21) or URD with ATG (P = .16), relative to haploidentical transplants. Multivariate analysis showed no difference between the 3 groups in terms of nonrelapse mortality (NRM), relapse/progression, and progression-free survival (PFS). These data suggest that reduced-intensity conditioning haploidentical transplantation with posttransplant cyclophosphamide does not compromise early survival outcomes compared with matched URD transplantation, and is associated with significantly reduced risk of chronic GVHD.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Cumulative incidence of GVHD. (A) Acute GVHD II-IV. Cumulative incidence of grade II-IV acute GVHD in recipients of haploidentical donor, unrelated donor with ATG, and unrelated donor without ATG allo-HCT (overall, P = .07). (B) Chronic GVHD. Cumulative incidence of chronic GVHD in recipients of haploidentical donor, unrelated donor with ATG, and unrelated donor without ATG allo-HCT (overall, P < .001 at 1 year and 2 years).
Figure 2
Figure 2
Cumulative incidence and Kaplan-Meier estimates. (A) NRM. Cumulative incidence of NRM in recipients of haploidentical donor, unrelated donor with ATG, and unrelated donor without ATG allo-HCT (overall, P = .08 at 3 years). (B) Relapse/progression. Cumulative incidence of lymphoma relapse/progression in recipients of haploidentical donor, unrelated donor with ATG, and unrelated donor without ATG allo-HCT (overall, P = .07 at 3 years). (C) PFS. Kaplan-Meir estimate of PFS in recipients of haploidentical donor, unrelated donor with ATG, and unrelated donor without ATG allo-HCT (overall, P = .02 at 3 years). (D) OS. Kaplan-Meier estimate of OS in recipients of haploidentical donor, unrelated donor with ATG, and unrelated donor without ATG allo-HCT (overall, P = .02 at 3 years).

Comment in

  • Might haplo "be the (better) match"?
    Kanakry JA, Luznik L. Kanakry JA, et al. Blood. 2016 Feb 18;127(7):799-800. doi: 10.1182/blood-2016-01-689042. Blood. 2016. PMID: 26893397 Free PMC article.

References

    1. Appelbaum FR. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia when a matched related donor is not available. Hematology Am Soc Hematol Educ Program. 2008;2008(1):412–417. - PubMed
    1. Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–348. - PMC - PubMed
    1. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491–498. - PMC - PubMed
    1. Henslee-Downey PJ, Parrish RS, MacDonald JS, et al. Combined in vitro and in vivo T lymphocyte depletion for the control of graft-versus-host disease following haploidentical marrow transplant. Transplantation. 1996;61(5):738–745. - PubMed
    1. Kanda Y, Oshima K, Asano-Mori Y, et al. In vivo alemtuzumab enables haploidentical human leukocyte antigen-mismatched hematopoietic stem-cell transplantation without ex vivo graft manipulation. Transplantation. 2005;79(10):1351–1357. - PubMed

Publication types

MeSH terms