Detection of unruptured intracranial aneurysms on noninvasive imaging. Is there still a role for digital subtraction angiography?
- PMID: 26674519
- PMCID: PMC4665160
- DOI: 10.4103/2152-7806.170029
Detection of unruptured intracranial aneurysms on noninvasive imaging. Is there still a role for digital subtraction angiography?
Abstract
Background: To determine the utility of digital subtraction angiography (DSA) in patients with unruptured intracranial aneurysms (UIA) detected on noninvasive imaging, such as magnetic resonance angiography (MRA) and computed tomography angiography (CTA). The follow-up of patients with untreated UIAs involves serial imaging; however, this diagnosis may be based on false positive (FP) results. We examined the incidence of FPs in our institutional series.
Methods: DSAs performed at our institution from January 2011 to June 2014 were retrospectively reviewed and patients referred with UIA detected on noninvasive imaging were selected. Clinical presentation as well as aneurysm location, size, and number reported on DSA and noninvasive imaging were assessed.
Results: Two hundred and eighty six patients (mean age 56.8 years, female 74.8%) with a total of 355 UIA were included. Thirty-one patients had a symptomatic presentation. Analysis per patient showed the pooled FP rate of noninvasive imaging was 15%. MRA FP was 13% (22/171) and CTA FP was 18% (22/120). FP increased significantly with aneurysm size < 3.5 mm on MRA (P < 0.001) and <4.0 mm on CTA (P = 0.01). Mean aneurysm size among symptomatic patients was significantly larger (P < 0.001) as compared to the incidental group (17.8 vs. 7.7 mm). No location was significantly susceptible to false detection of aneurysms.
Conclusion: DSA detection of FP UIA diagnosed on noninvasive imaging is significantly higher for aneurysms <4.0 mm. Accurate diagnosis with DSA may eliminate the need for further follow-up and its associated negative psychological and economic effects. Within the limitations of this retrospective study, we conclude that DSA has a diagnostic role in small aneurysms detected on noninvasive imaging.
Keywords: Angiography; cerebral aneurysm; computed tomography; digital subtraction angiography; magnetic resonance imaging.
References
-
- Backes D, Vergouwen MD, Tiel Groenestege AT, Bor AS, Velthuis BK, Greving JP, et al. PHASES score for prediction of intracranial aneurysm growth. Stroke. 2015;46:1221–6. - PubMed
-
- Backes D, Vergouwen MD, Velthuis BK, van der Schaaf IC, Bor AS, Algra A, et al. Difference in aneurysm characteristics between ruptured and unruptured aneurysms in patients with multiple intracranial aneurysms. Stroke. 2014;45:1299–303. - PubMed
-
- Chen W, Yang Y, Xing W, Qiu J, Peng Y. Application of multislice computed tomographic angiography in diagnosis and treatment of intracranial aneurysms. Clin Neurol Neurosurg. 2010;112:563–71. - PubMed
-
- Cloft HJ, Joseph GJ, Dion JE. Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: A meta-analysis. Stroke. 1999;30:317–20. - PubMed
-
- Hoh BL, Cheung AC, Rabinov JD, Pryor JC, Carter BS, Ogilvy CS. Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery. 2004;54:1329–40. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
