Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan;12(1):119-36.
doi: 10.2217/fon.15.295. Epub 2015 Dec 17.

Standardized data collection to build prediction models in oncology: a prototype for rectal cancer

Affiliations
Free article
Review

Standardized data collection to build prediction models in oncology: a prototype for rectal cancer

Elisa Meldolesi et al. Future Oncol. 2016 Jan.
Free article

Abstract

The advances in diagnostic and treatment technology are responsible for a remarkable transformation in the internal medicine concept with the establishment of a new idea of personalized medicine. Inter- and intra-patient tumor heterogeneity and the clinical outcome and/or treatment's toxicity's complexity, justify the effort to develop predictive models from decision support systems. However, the number of evaluated variables coming from multiple disciplines: oncology, computer science, bioinformatics, statistics, genomics, imaging, among others could be very large thus making traditional statistical analysis difficult to exploit. Automated data-mining processes and machine learning approaches can be a solution to organize the massive amount of data, trying to unravel important interaction. The purpose of this paper is to describe the strategy to collect and analyze data properly for decision support and introduce the concept of an 'umbrella protocol' within the framework of 'rapid learning healthcare'.

Keywords: Big Data; data standardization; decision support system; ontology; predictive models; semantic web; umbrella protocol.

PubMed Disclaimer

LinkOut - more resources