Modeling Fatty Acid Transfer from Artery to Cardiomyocyte
- PMID: 26675003
- PMCID: PMC4682637
- DOI: 10.1371/journal.pcbi.1004666
Modeling Fatty Acid Transfer from Artery to Cardiomyocyte
Abstract
Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- van der Vusse G.J., et al. , Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev, 1992. 72(4): p. 881–940. - PubMed
-
- van der Vusse G.J., et al. , Critical steps in cellular fatty acid uptake and utilization. Mol Cell Biochem, 2002. 239(1–2): p. 9–15. - PubMed
-
- Richieri G.V., Anel A., and Kleinfeld A.M., Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry, 1993. 32(29): p. 7574–80. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
