Computational Modeling of Kinase Inhibitor Selectivity
- PMID: 26677403
- PMCID: PMC4669537
- DOI: 10.1021/ml1001097
Computational Modeling of Kinase Inhibitor Selectivity
Abstract
An exhaustive computational exercise on a comprehensive set of 15 therapeutic kinase inhibitors was undertaken to identify as to which compounds hit which kinase off-targets in the human kinome. Although the kinase selectivity propensity of each inhibitor against ∼480 kinase targets is predicted, we compared our predictions to ∼280 kinase targets for which consistent experimental data are available and demonstrate an overall average prediction accuracy and specificity of ∼90%. A comparison of the predictions was extended to an additional ∼60 kinases for sorafenib and sunitinib as new experimental data were reported recently with similar prediction accuracy. The successful predictive capabilities allowed us to propose predictions on the remaining kinome targets in an effort to repurpose known kinase inhibitors to these new kinase targets that could hold therapeutic potential.
Keywords: Kinase selectivity; binding hot spots; binding site signature; computational prediction; kinase conformation; kinase inhibitors.
Figures
Similar articles
-
Computational analysis of kinase inhibitor selectivity using structural knowledge.Bioinformatics. 2019 Jan 15;35(2):235-242. doi: 10.1093/bioinformatics/bty582. Bioinformatics. 2019. PMID: 29985971 Free PMC article.
-
Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome.J Chem Inf Model. 2012 Jan 23;52(1):156-70. doi: 10.1021/ci200314j. Epub 2012 Jan 6. J Chem Inf Model. 2012. PMID: 22133092
-
Rapid computational identification of the targets of protein kinase inhibitors.Curr Opin Drug Discov Devel. 2006 May;9(3):326-31. Curr Opin Drug Discov Devel. 2006. PMID: 16729728 Review.
-
Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach.ChemMedChem. 2016 Jun 20;11(12):1352-61. doi: 10.1002/cmdc.201500228. Epub 2015 Jul 17. ChemMedChem. 2016. PMID: 26222196
-
Perspective on computational and structural aspects of kinase discovery from IPK2014.Biochim Biophys Acta. 2015 Oct;1854(10 Pt B):1595-604. doi: 10.1016/j.bbapap.2015.03.014. Epub 2015 Apr 7. Biochim Biophys Acta. 2015. PMID: 25861861 Free PMC article. Review.
Cited by
-
Extraction and validation of substructure profiles for enriching compound libraries.J Comput Aided Mol Des. 2012 Oct;26(10):1127-41. doi: 10.1007/s10822-012-9604-8. Epub 2012 Sep 16. J Comput Aided Mol Des. 2012. PMID: 22983491
-
Computational analysis of kinase inhibitor selectivity using structural knowledge.Bioinformatics. 2019 Jan 15;35(2):235-242. doi: 10.1093/bioinformatics/bty582. Bioinformatics. 2019. PMID: 29985971 Free PMC article.
-
Quantitative Structure-Activity Relationship Modeling of Kinase Selectivity Profiles.Molecules. 2017 Sep 19;22(9):1576. doi: 10.3390/molecules22091576. Molecules. 2017. PMID: 28925954 Free PMC article.
-
Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.Mol Pharm. 2010 Dec 6;7(6):2324-33. doi: 10.1021/mp1002976. Epub 2010 Nov 8. Mol Pharm. 2010. PMID: 20958088 Free PMC article.
-
De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.ACS Chem Biol. 2013 May 17;8(5):1044-52. doi: 10.1021/cb300729y. Epub 2013 Mar 27. ACS Chem Biol. 2013. PMID: 23534475 Free PMC article.
References
-
- Sawa M. Strategies for the design of selective protein kinase inhibitors. Mini Rev. Med. Chem. 2008, 8, 1291–1297. - PubMed
-
- Morphy R. Selectively nonselective kinase inhibition: Striking the right balance. J. Med. Chem. 2010, 53, 1413–1437. - PubMed
-
- Manning G.; Whyte D. B.; Martinez R.; Hunter T.; Sudarsanam S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. - PubMed
-
- Melnick J. S.; Janes J.; Kim S.; Chang J. Y.; Sipes D. G.; Gunderson D.; Jarnes L.; Matzen J. T.; Garcia M. E.; Hood T. L.; Beigi R.; Xia G.; Harig R. A.; Asatryan H.; Yan S. F.; Zhou Y.; Gu X.-J.; Saadat A.; Zhou V.; King F. J.; Shaw C. M.; Su A. I.; Downs R.; Gray N. S.; Schultz P. G.; Warmuth M.; Caldwell J. S. An efficient rapid system for profiling the cellular activities of molecular libraries. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3153–3158. - PMC - PubMed
LinkOut - more resources
Full Text Sources