Lenvatinib: Role in thyroid cancer and other solid tumors
- PMID: 26678514
- DOI: 10.1016/j.ctrv.2015.11.003
Lenvatinib: Role in thyroid cancer and other solid tumors
Abstract
Despite recent breakthroughs in treatment of advanced thyroid cancers, prognoses remain poor. Treatment of advanced, progressive disease remains challenging, with limited treatment options. Small-molecule tyrosine kinase inhibitors, including vandetanib, cabozantinib, sorafenib, and lenvatinib, which are now FDA-approved for thyroid cancer, have shown clinical benefit in advanced thyroid cancer. Lenvatinib is approved for treatment of locally recurrent or metastatic, progressive, radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC). It has been studied in phase II and III trials for treatment of advanced RAI-refractory DTC, and in a phase II trial for medullary thyroid cancer (MTC). Lenvatinib targets vascular endothelial growth factor receptors 1-3 (VEGFR1-3), fibroblast growth factor receptors 1-4 (FGFR-1-4), RET, c-kit, and platelet-derived growth factor receptor α (PDGFRα). Its antitumor activity may be due to antiangiogenic properties and direct antitumor effects. Lenvatinib has demonstrated antitumor activity in a variety of solid tumors, including MTC, in phase I and II clinical trials. In a phase II study in advanced RAI-refractory DTC, lenvatinib-treated patients achieved a 50% response rate (RR), with median progression-free survival (PFS) of 12.6 months. In a phase III trial in RAI-refractory DTC, median PFS in lenvatinib-treated patients was 18.3 months, with a 65% overall RR, versus 3.6 months in placebo-treated patients, with a 2% RR. Adverse events occurring in >50% of patients included hypertension, diarrhea, fatigue/asthenia, and decreased appetite. Lenvatinib is a promising new agent for treatment of patients with advanced thyroid cancer.
Keywords: Advanced; Differentiated; Medullary; Multikinase; Refractory; Survival.
Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
