The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment
- PMID: 26678569
- PMCID: PMC4704947
- DOI: 10.2196/mhealth.4334
The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment
Abstract
Background: Advancements in mobile phone technology have led to the development of smartphones with the capability to run apps. The availability of a plethora of health- and fitness-related smartphone apps has the potential, both on a clinical and public health level, to facilitate healthy behavior change and weight management. However, current top-rated apps in this area have not been extensively evaluated in terms of scientific quality and behavioral theory evidence base.
Objective: The purpose of this study was to evaluate the quality of the most popular dietary weight-loss smartphone apps on the commercial market using comprehensive quality assessment criteria, and to quantify the behavior change techniques (BCTs) incorporated.
Methods: The top 200-rated Health & Fitness category apps from the free and paid sections of Google Play and iTunes App Store in Australia (n=800) were screened in August 2014. To be included in further analysis, an app had to focus on weight management, include a facility to record diet intake (self-monitoring), and be in English. One researcher downloaded and used the eligible apps thoroughly for 5 days and assessed the apps against quality assessment criteria which included the following domains: accountability, scientific coverage and content accuracy of information relevant to weight management, technology-enhanced features, usability, and incorporation of BCTs. For inter-rater reliability purposes, a second assessor provided ratings on 30% of the apps. The accuracy of app energy intake calculations was further investigated by comparison with results from a 3-day weighed food record (WFR).
Results: Across the eligible apps reviewed (n=28), only 1 app (4%) received full marks for accountability. Overall, apps included an average of 5.1 (SD 2.3) out of 14 technology-enhanced features, and received a mean score of 13.5 (SD 3.7) out of 20 for usability. The majority of apps provided estimated energy requirements (24/28, 86%) and used a food database to calculate energy intake (21/28, 75%). When compared against the WFR, the mean absolute energy difference of apps which featured energy intake calculations (23/28, 82%) was 127 kJ (95% CI -45 to 299). An average of 6.3 (SD 3.7) of 26 BCTs were included.
Conclusions: Overall, the most popular commercial apps for weight management are suboptimal in quality, given the inadequate scientific coverage and accuracy of weight-related information, and the relative absence of BCTs across the apps reviewed. With the limited regulatory oversight around the quality of these types of apps, this evaluation provides clinicians and consumers an informed view of the highest-quality apps in the current popular app pool appropriate for recommendation and uptake. Further research is necessary to assess the effectiveness of apps for weight management.
Keywords: behavior change techniques; evaluation; obesity; quality; smartphone apps; weight management.
Conflict of interest statement
Conflicts of Interest: JC declares no personal or financial conflicts of interest. JEC developed the My Meal Mate app on a grant from the National Prevention Research Initiative (grant number G0802108). It is available free of charge. MAF has developed food-based apps, but not for weight management.
Figures
References
-
- Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang J, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang Y, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon S, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug 30;384(9945):766–781. doi: 10.1016/S0140-6736(14)60460-8.S0140-6736(14)60460-8 - DOI - PMC - PubMed
-
- Dennison L, Morrison L, Conway G, Yardley L. Opportunities and challenges for smartphone applications in supporting health behavior change: Qualitative study. J Med Internet Res. 2013;15(4):e86. doi: 10.2196/jmir.2583. http://www.jmir.org/2013/4/e86/ v15i4e86 - DOI - PMC - PubMed
-
- Australian Communications and Media Authority (ACMA) Communications Report 2012-13. Melbourne, Australia: Commonwealth of Australia; 2013. [2014-08-25]. http://www.acma.gov.au/~/media/Research%20and%20Analysis/Publication/Com... .
-
- eMarketer US Smartphone Usage Nears UK Levels. 2014. Apr 2, [2014-10-17]. http://www.emarketer.com/Article/US-Smartphone-Usage-Nears-UK-Levels/101... .
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
