Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2015 Dec;16(4):331-42.
doi: 10.1089/ham.2015.0066.

Methazolamide Plus Aminophylline Abrogates Hypoxia-Mediated Endurance Exercise Impairment

Affiliations
Randomized Controlled Trial

Methazolamide Plus Aminophylline Abrogates Hypoxia-Mediated Endurance Exercise Impairment

Rebecca L Scalzo et al. High Alt Med Biol. 2015 Dec.

Abstract

In hypoxia, endurance exercise performance is diminished; pharmacotherapy may abrogate this performance deficit. Based on positive outcomes in preclinical trials, we hypothesized that oral administration of methazolamide, a carbonic anhydrase inhibitor, aminophylline, a nonselective adenosine receptor antagonist and phosphodiesterase inhibitor, and/or methazolamide combined with aminophylline would attenuate hypoxia-mediated decrements in endurance exercise performance in humans. Fifteen healthy males (26 ± 5 years, body-mass index: 24.9 ± 1.6 kg/m(2); mean ± SD) were randomly assigned to one of four treatments: placebo (n = 9), methazolamide (250 mg; n = 10), aminophylline (400 mg; n = 9), or methazolamide (250 mg) with aminophylline (400 mg; n = 8). On two separate occasions, the first in normoxia (FIO2 = 0.21) and the second in hypoxia (FIO2 = 0.15), participants sat for 4.5 hours before completing a standardized exercise bout (30 minutes, stationary cycling, 100 W), followed by a 12.5-km time trial. The magnitude of time trial performance decrement in hypoxia versus normoxia did not differ between placebo (+3.0 ± 2.7 minutes), methazolamide (+1.4 ± 1.7 minutes), and aminophylline (+1.8 ± 1.2 minutes), all with p > 0.09; however, the performance decrement in hypoxia versus normoxia with methazolamide combined with aminophylline was less than placebo (+0.6 ± 1.5 minutes; p = 0.01). This improvement may have been partially mediated by increased SpO2 in hypoxia with methazolamide combined with aminophylline compared with placebo (73% ± 3% vs. 79% ± 6%; p < 0.02). In conclusion, coadministration of methazolamide and aminophylline may promote endurance exercise performance during a sojourn at high altitude.

Trial registration: ClinicalTrials.gov NCT01702025.

Keywords: high-altitude; methazolamide; theophylline.

PubMed Disclaimer

Publication types

Associated data