Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;69(3):604-11.
doi: 10.1210/jcem-69-3-604.

Nocturnal decrease in glucose tolerance during constant glucose infusion

Affiliations

Nocturnal decrease in glucose tolerance during constant glucose infusion

E Van Cauter et al. J Clin Endocrinol Metab. 1989 Sep.

Abstract

Studies comparing glucose tolerance in the morning vs. that in the evening have suggested that time of day may influence glucose regulation. To examine the variation in glucose tolerance throughout the 24-h span, normal subjects were given an iv glucose infusion at a constant rate of either 5 or 8 g/kg.24 h during 30 h, and plasma levels of insulin and glucose were measured at 15-min intervals for the last 24 h of the infusion. The timing of initiation of the infusion was varied to differentiate effects of time of day from effects of duration of the infusion. A nocturnal elevation of glucose levels, culminating around midsleep and corresponding to an increase of about 15% above daytime levels, was observed in all subjects. The timing of this nocturnal maximum was not dependent on the rate of the infusion or on the time elapsed since the beginning of the infusion. Insulin levels did not show a consistent diurnal pattern. Both insulin and glucose exhibited large ultradian oscillations recurring at 100- to 150-min intervals. The amplitude of these oscillations increased with the rate of glucose infusion. These ultradian oscillations of glucose and insulin levels were temporally correlated, with a tendency for glucose pulses to lead insulin pulses by 15-30 min. These results demonstrate in normal subjects the existence of a diurnal variation in glucose tolerance distinct from the dawn phenomenon observed in diabetic subjects and indicate that spontaneous 100- to 150-min oscillations in peripheral glucose and insulin levels characterize stimulated pancreatic function, with the amplitude of the oscillations being dependent on the size of the stimulus.

PubMed Disclaimer

Publication types

LinkOut - more resources