Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 15;7(10):1883-95.
eCollection 2015.

Syntaxin 1A mediates isoflurane but not hypoxia preconditioning-induced alleviation of hypoxia-reoxygenation injury in rat cardiomyocytes

Affiliations

Syntaxin 1A mediates isoflurane but not hypoxia preconditioning-induced alleviation of hypoxia-reoxygenation injury in rat cardiomyocytes

Meng Liu et al. Am J Transl Res. .

Abstract

Preconditioning with ischemia/hypoxia (IPC/HPC) or clinically available volatile anesthetics such as isoflurane (Iso-PC) could activate cardioprotective signaling pathways, thereby reducing myocardial ischemia/reperfusion (IR) injury. However, their molecular targets remain elusive. We herein investigated the roles of syntaxin 1A (Stx-1A) in cardiomyocyte protection induced by HPC and Iso-PC. Both in vivo myocardial IR model and in vitro cardiomyocyte hypoxia/reoxygenation (HR) model were used to test the effects of IR/HR, IPC/HPC and Iso-PC on Stx-1A protein expression. Stx-1A knockdown and overexpression in cardiomyocytes were achieved by adenovirus infection to define the relationship between Stx-1A levels and IPC/Iso-PC-induced cardioprotection. Cardiac troponin T (cTnT), cell apoptosis rate, and cell viability were introduced as indicators for cardiomyocyte HR injury. Changes of cardioprotective signaling pathways activities including PI3K/AKT/GSK3β, ERK1/2, STAT3 and PKC were also detected using Western blot. Rat cardiomyocyte Stx-1A was upregulated 4 hours after IR or HR. IPC/HPC as well as Iso-PC further increased Stx-1A expression compared with IR/HR. Stx-1A knockdown was accompanied with more cell apoptosis and decreased cell viability while overexpression of Stx-1A seemed cardioprotective. Iso-PC induced decrease in cell apoptosis and increase in cell viability but not HPC-induced cardioprotection was reversed by Stx-1A shRNA transfection. No difference in cell apoptosis or cell viability was found before and after Stx-1A overexpression in each group. Moreover, Stx-1A knockdown were accompanied with increased PI3K/AKT/GSK3β activities irrespective of the treatments. Stx-1A is cardioprotective and a potential target of isoflurane induced cardioprotection. Further studies are needed to test whether stx-1A is regulated by AKT/GSK3β signaling.

Keywords: Syntaxin 1A; cardiomyocyte; hypoxia; preconditioning; volatile anesthetics.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Experimental protocol for in vivo IR (A) and in vitro HR (B) model. Sham, Sham group; Iso, Isoflurane treatment without I/R or H/R injury; IR (ischemia/reperfusion) or HR (hypoxia/reoxygenation); IPC (ischemia preconditioning) or HPC (hypoxia preconditioning); Iso-PC (isoflurane preconditioning); W, washout for 10 minutes.
Figure 2
Figure 2
Stx-1A expression and cTnT release after HR and IR. A. Stx-1A expression in primary cardiomyocytes 4 hours after hypoxia. B. Stx-1A expression in hearts 4 hours after ischemia. C. Stx-1A expression in primary cardiomyocytes 24 hours after hypoxia. D. Stx-1A expression in hearts 24 hours after ischemia. E. cTnT release 4 hours after hypoxia. F. cTnT release 4 hours after ischemia. *, P<0.05 and **, P<0.01.
Figure 3
Figure 3
Stx-1A expression after adenovirus transfection of plasmid vector, siRNA or rat Stx-1A. *, P<0.05 and **, P<0.01.
Figure 4
Figure 4
Cell apoptosis in wild-type cardiomyocytes and cardiomyocytes subjected to Stx-1A knockdown and overexpression. A-C. Representative results of flow cytometry for wild-type cardiomyocytes and cardiomyocytes subjected to Stx-1A knockdown and overexpression. D. Histograms showing apoptosis rates in three kinds of cells. *, P<0.05 and **, P<0.01.
Figure 5
Figure 5
Cell viability assay results in wild-type cardiomyocytes and cardiomyocytes subjected to Stx-1A knockdown and overexpression. *, P<0.05 and **, P<0.01.
Figure 6
Figure 6
Cardioprotective signaling pathway activities. A. Representative strips of ERK1/2, AKT/GSK3β, JNK/STAT3 and PKC during HPC. β-actin was used as internal control. B. Histograms showing relative AKT activities under different circumstances. C. Histograms showing relative GSK3β activities under different circumstances. D. Representative strips of ERK1/2, AKT/GSK3β, JNK/STAT3 and PKC during Iso-PC. β-actin was used as internal control. E. Histograms showing relative AKT activities under different circumstances. F. Histograms showing relative GSK3β activities under different circumstances. *, P<0.05 and **, P<0.01.

Similar articles

Cited by

References

    1. Wright DE, Hunt DP. Perioperative surveillance for adverse myocardial events. South Med J. 2008;101:52–58. - PubMed
    1. Botto F, Alonso-Coello P, Chan MT, Villar JC, Xavier D, Srinathan S, Guyatt G, Cruz P, Graham M, Wang CY, Berwanger O, Pearse RM, Biccard BM, Abraham V, Malaga G, Hillis GS, Rodseth RN, Cook D, Polanczyk CA, Szczeklik W, Sessler DI, Sheth T, Ackland GL, Leuwer M, Garg AX, Lemanach Y, Pettit S, Heels-Ansdell D, Luratibuse G, Walsh M, Sapsford R, Schünemann HJ, Kurz A, Thomas S, Mrkobrada M, Thabane L, Gerstein H, Paniagua P, Nagele P, Raina P, Yusuf S, Devereaux PJ, Devereaux PJ, Sessler DI, Walsh M, Guyatt G, McQueen MJ, Bhandari M, Cook D, Bosch J, Buckley N, Yusuf S, Chow CK, Hillis GS, Halliwell R, Li S, Lee VW, Mooney J, Polanczyk CA, Furtado MV, Berwanger O, Suzumura E, Santucci E, Leite K, Santo JA, Jardim CA, Cavalcanti AB, Guimaraes HP, Jacka MJ, Graham M, McAlister F, McMurtry S, Townsend D, Pannu N, Bagshaw S, Bessissow A, Bhandari M, Duceppe E, Eikelboom J, Ganame J, Hankinson J, Hill S, Jolly S, Lamy A, Ling E, Magloire P, Pare G, Reddy D, Szalay D, Tittley J, Weitz J, Whitlock R, Darvish-Kazim S, Debeer J, Kavsak P, Kearon C, Mizera R, O’Donnell M, McQueen M, Pinthus J, Ribas S, Simunovic M, Tandon V, Vanhelder T, Winemaker M, Gerstein H, McDonald S, O’Bryne P, Patel A, Paul J, Punthakee Z, Raymer K, Salehian O, Spencer F, Walter S, Worster A, Adili A, Clase C, Cook D, Crowther M, Douketis J, Gangji A, Jackson P, Lim W, Lovrics P, Mazzadi S, Orovan W, Rudkowski J, Soth M, Tiboni M, Acedillo R, Garg A, Hildebrand A, Lam N, Macneil D, Mrkobrada M, Roshanov PS, Srinathan SK, Ramsey C, John PS, Thorlacius L, Siddiqui FS, Grocott HP, McKay A, Lee TW, Amadeo R, Funk D, McDonald H, Zacharias J, Villar JC, Cortés OL, Chaparro MS, Vásquez S, Castañeda A, Ferreira S, Coriat P, Monneret D, Goarin JP, Esteve CI, Royer C, Daas G, Chan MT, Choi GY, Gin T, Lit LC, Xavier D, Sigamani A, Faruqui A, Dhanpal R, Almeida S, Cherian J, Furruqh S, Abraham V, Afzal L, George P, Mala S, Schünemann H, Muti P, Vizza E, Wang CY, Ong GS, Mansor M, Tan AS, Shariffuddin II, Vasanthan V, Hashim NH, Undok AW, Ki U, Lai HY, Ahmad WA, Razack AH, Malaga G, Valderrama-Victoria V, Loza-Herrera JD, De Los Angeles Lazo M, Rotta-Rotta A, Szczeklik W, Sokolowska B, Musial J, Gorka J, Iwaszczuk P, Kozka M, Chwala M, Raczek M, Mrowiecki T, Kaczmarek B, Biccard B, Cassimjee H, Gopalan D, Kisten T, Mugabi A, Naidoo P, Naidoo R, Rodseth R, Skinner D, Torborg A, Paniagua P, Urrutia G, Maestre ML, Santaló M, Gonzalez R, Font A, Martínez C, Pelaez X, De Antonio M, Villamor JM, García JA, Ferré MJ, Popova E, Alonso-Coello P, Garutti I, Cruz P, Fernández C, Palencia M, Díaz S, Del Castillo T, Varela A, de Miguel A, Muñoz M, Piñeiro P, Cusati G, Del Barrio M, Membrillo MJ, Orozco D, Reyes F, Sapsford RJ, Barth J, Scott J, Hall A, Howell S, Lobley M, Woods J, Howard S, Fletcher J, Dewhirst N, Williams C, Rushton A, Welters I, Leuwer M, Pearse R, Ackland G, Khan A, Niebrzegowska E, Benton S, Wragg A, Archbold A, Smith A, McAlees E, Ramballi C, Macdonald N, Januszewska M, Stephens R, Reyes A, Paredes LG, Sultan P, Cain D, Whittle J, Del Arroyo AG, Sessler DI, Kurz A, Sun Z, Finnegan PS, Egan C, Honar H, Shahinyan A, Panjasawatwong K, Fu AY, Wang S, Reineks E, Nagele P, Blood J, Kalin M, Gibson D, Wildes T Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Writing Group, on behalf of The Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Investigators; Appendix 1. The Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Study Investigators Writing Group; Appendix 2. The Vascular events In noncardiac Surgery patIents cOhort evaluatioN Operations Committee; Vascular events In noncardiac Surgery patIents cOhort evaluatioN VISION Study Investigators. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120:564–578. - PubMed
    1. Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, Price V, Tsagakis K, Neuhauser M, Peters J, Jakob H, Heusch G. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet. 2013;382:597–604. - PubMed
    1. Shalaby A, Rinne T, Jarvinen O, Saraste A, Laurikka J, Porkkala H, Saukko P, Tarkka M. Initial results of a clinical study: adenosine enhanced cardioprotection and its effect on cardiomyocytes apoptosis during coronary artery bypass grafting. Eur J Cardiothorac Surg. 2008;33:639–644. - PubMed
    1. Sloth AD, Schmidt MR, Munk K, Kharbanda RK, Redington AN, Schmidt M, Pedersen L, Sorensen HT, Botker HE CONDI Investigators. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur Heart J. 2014;35:168–175. - PubMed

LinkOut - more resources