Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan 26;55(5):1614-50.
doi: 10.1002/anie.201502227. Epub 2015 Dec 22.

The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry)

Affiliations
Review

The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry)

Mark P Thomas et al. Angew Chem Int Ed Engl. .

Abstract

Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.

Keywords: cyclitols; inositol; isomers; phosphates; synthetic methods.

PubMed Disclaimer

Figures

Figure 1
Figure 1. The structures of the inositol isomers.
Three projections of each of the inositols are shown. The first column is a Mills projection. The second column is a Haworth projection. The third column shows a more realistic three-dimensional structure (not necessarily the most stable structure) for each of the inositols. The numbering of the carbons in the ring is shown.
Scheme 1
Scheme 1
Reaction conditions: (a) OsO4, NMO, acetone (aq).
Scheme 2
Scheme 2
Reaction conditions: (a) I2, Ag2O, dioxane (aq), 90°C, (b) CF3COOH(aq), THF, 50°C.
Scheme 3
Scheme 3
Reaction conditions: (a) PTSA, MeOH, reflux; (b) BzCl, pyr., 91%; (c) Pd(OH)2/C, MeOH, (50 psi) H2, 96%; (d) Tf2O, CH2Cl2, pyr., –42°C→ rt, 89%; (e) KOBz, DMSO, 100°C 32%; (f) base (step not shown in original literature).
Scheme 4
Scheme 4
Reaction conditions: (a) 5% mol PdCl2, Dioxane-H2O, 4:1, 81%; (b) 5% mol PdCl2, dioxane-H2O, 2:1.
Scheme 5
Scheme 5
Reaction conditions: (a) NaBH4, MeOH, 0°C, 30 min; up to 99:1 of desired product; (b) Me4NBH(OAc)3, 5.0 eq, MeCN, AcOH, 0°C, 3 h, up to 99:1 of desired product; (c) NaOH, MeOH, 0°C, then Pd(OH)2, H2, MeOH.
Scheme 6
Scheme 6
Reaction conditions: (a) NaBH4, MeOH, 0°C, 30 min., 97%; (b) Pd(OH)2 on carbon, H2, MeOH, 12 h, quantitative yield; (c) H2SO4 (conc.), Me2C=O, 0°C, 1 h 83%; (d) Tf2O, pyridine, CH2Cl2, rt, 1 h, 89%; (e) CF3CO2Cs, 18-crown-6, toluene, DMF, 80°C, 1.5 h, then saturated NaHCO3, rt, 1 h, 78% from 57; (f) TFA, MeOH, 60°C, 3 h.
Scheme 7
Scheme 7
Reaction conditions: (a) Br2, CHCl3, 0°C, (98%); (b) NaBH4, Et2O, –20°C to rt (88%); (c) pyridine, acetic anhydride, overnight, (68%); (d) PPL phosphate buffer (pH 7), 4 days (38% of each).
Scheme 8
Scheme 8
Reaction conditions (a) NaOAc, AcOH (95%), 10 days, 125°C; Ac2O, CH2Cl2, DMAP; (b) RuCl3, NaIO4, MeCN; (c) NaOMe, MeOH; (d) (CF3CO)2O, H2O2, CH2Cl2, NaHCO3; (e) Ac2O, pyridine; (f) NaOMe, MeOH, then water/NaOH; (g) NaOBn, BnOH/THF; (h) (CF3CO)2O, H2O2, CH2Cl2, Na2CO3; (i) H2SO4, dioxane, H2O; (j) Pd/C, H2, ethanol/water.
Scheme 9
Scheme 9
Reaction conditions: (a) 2,2-dimethoxypropane, acetone, PPTS, (b) 1. NaOAll, 90°C, 2. HCl; (c) 1. Pd/C, MeOH; 2. HCl, 3. Pd/C, H2.
Scheme 10
Scheme 10
Reaction conditions: (a) RuCl3, NaIO4, acetonitrile; (b) Ac2O, pyridine; (c) Zn, Et2O, AcOH; (d) 1. RuCl3, NaIO4, acetonitrile; 2 Ac2O, pyridine; (e) NaOMe, MeOH.
Scheme 11
Scheme 11
Reaction conditions: (a) CH2=PPh3, THF, 45°C, 10 h; then COCl2, Me2SO, CH2Cl2, –78°C, 20 min, Et3N, –78°C to rt; (b) vinyl magnesium bromide, MgBr2·OEt2, –78°C, CH2Cl2, 3 h; (c) (CyP)2RuCl2(CHPh), 10 mol %, CH2Cl2, 15 min, 99%; (d) BnBr, DMF, NaH, 94%; (e) OsO4, NMO, Me2C=O/H2O, 93%; (f) TIPS-Cl, DMF, AgNO3, Separate compounds, (yield not given for this step, but 54% over 3 preceding steps); (g) O3, CH2Cl2, pyridine, then Me2S, (h) SmI2, tert-BuOH, THF, –78°C, 3 h, then 20°C, O/N.
Scheme 12
Scheme 12
Reaction conditions: (a) NaH, BzCl, DMF, rt; (b) Tosyl chloride, Pyr. 80-100°C; (c) iso-butylamine, MeOH, reflux; (d) (COCl)2, DMSO, CH2Cl2, –78°C, then Et3N, rt; (e) NaBH4, MeOH-THF, rt; (f) NaOMe, MeOH, reflux; (g) TFA-water (4:1).
Figure 2
Figure 2. The conversion of myo-inositol to scyllo-inositol via myo-inosose
Figure 3
Figure 3
1-deoxy-1-fluoro-scyllo-inositol (96); 1,4-dideoxy-1,4-dimethyl-scyllo-inositol (97); Oxime derivatives of scyllo-inositol (98). R = H or up to 3 hydroxyl substituents on the ring.
Figure 4
Figure 4
scyllo-Inositol-1,2,4,5-tetrakisphosphate. (99), l-scyllo-Inositol-1,2,4-trisphosphate (100), scyllo-Inositol-1,2,3,4,5-pentakisphosphate (101).
Scheme 13
Scheme 13
Reaction conditions: (a) 2,2-Dimethoxypropane, PTSA; (b) KMnO4, MgSO4, aqueous acetone, 8:1, ratio of compound 104 to compound 105, 60%; (c) AIBN, tris(trimethylsilyl)silane, toluene, 42%; (d) H2O, sodium benzoate, 77% yield, >95% purity.
Figure 5
Figure 5
d-chiro-inositol-1,3,4,6-tetrakisphosphate (107); d-chiro-inositol-2,3,4,5-tetrakisphosphate (108); d-chiro-inositol-1,3,4-trisphosphate (109).
Figure 6
Figure 6
INS-2 Pinitol β-1,4-galatosamine
Scheme 14
Scheme 14
Reaction conditions: (a) Toluene dioxygenase; (b) 2,2-dimethoxypropane, TsOH, rt; (c) MCPBA, CH2Cl2, 96%; (d) PhCH2OH, BF3:Et2O, –10°C, 85%; (e) n-Bu3SnH, AIBN, THF, 78%; (f) OsO4, acetone, H2O, NMO, 75%; (g) HCl, EtOH, 79%; (h) 10% Pd/C, H2, H2O, 81%, (30% overall yield from 114).
Figure 7
Figure 7
l-chiro-inositol-2,3,5-trisphosphate (117) l-chiro-inositol-2,3,5-trisphosphorothioate (118) l-chiro-inositol-1,4,6-trisphosphate (119) l-chiro-inositol-1,4,6-trisphosphorothioate (120).
Figure 8
Figure 8
l-chiro-inositol-1,3,4,6-tetrakisphosphate (121); l-chiro-inositol-2,3,4,5-tetrakisphosphate (122); l-chiro-inositol-1,3,4-trisphosphate (123).
Scheme 15
Scheme 15
Reaction conditions: epi-Inositol Synthesis: (a) TrCl, pyr. Reflux, 1.5 h, 93%; (b) BnBr, NaH, Bu4NI, THF, 25°C, 6 h, reflux 19 h, 85%; (c) CH2Cl2-MeOH (2:1), TFA, 18 h, 79%; (d) (i) (COCl)2, DMSO, CH2Cl2, –78°C, 25 min; (ii) Et3N, –78°C to 25°C, 1.5 h, 88%; (e) Catalyst 124 or 125, Et3N, 14%; (f) EtOH, NaBH4, 1 h, reflux; (g) PdCl2, EtOH, H2, 78% for steps f and g.
Scheme 16
Scheme 16
Reagents and conditions: (a) Butanedione, MeOH, CH(OMe)3, (±)-10-camphorsulfonic acid, reflux; (b) Trifluoromethanesulphonic anhydride, pyridine, CH2Cl2, –78°C to rt; (c) 50:1 dimethylacetamide-water, 50°C; (d) NaOMe, MeOH, reflux; (e) 4:1 AcOH-water, reflux.
Figure 9
Figure 9
neo-inositol hexakisphosphate (137) 2-diphospho-neo-inositol 1,3,4,5,6-pentakisphosphate (138), 2,5-bisdiphospho-neo-inositol 1,3,4,6-tetrakisphosphate (139).
Scheme 17
Scheme 17
Reaction conditions: (a) 10% aqueous KOH, H2O, DME, 87%; (b) n-Bu3SnH, AIBN, THF, 90%; (c) MCPBA, CH2Cl2, 71%; (d) 10% aqeous H2SO4, 78%; (e) Amberlyst A-27, H2O, 89%.
Scheme 18
Scheme 18
Reagents and conditions: allo-Inositol Synthesis: (a) TrCl, pyr. Reflux, 1.5 h, 97%; (b) BnBr, NaH, Bu4NI, THF, 25°C, 6 h, reflux 19 h, 90%; (c) CH2Cl2-MeOH (2:1), TFA, 18 h, 86%; (d) (i) (COCl)2, DMSO, CH2Cl2, –78°C, 25 min; (ii) Et3N, –78°C to 25°C, 1.5 h, 99%; (e) Catalyst 124 or 125 Et3N, 54%; (f) EtOH, NaBH4, 1 h, reflux; (g) PdCl2, EtOH, H2, 81% for 2 steps f and g.
Figure 10
Figure 10
The black dashed line indicates an apparent plane of symmetry that does not really exist: the hydroxyl on one side of the line is equatorial while the equivalent hydroxyl on the other side of the line is axial. The lack of any plane of symmetry in allo-inositol means that the conformational isomers are also enantiomers.
Scheme 19
Scheme 19
Reaction conditions: (a) Cyclohexanone, benzene, reflux, PTSA, 59%; (b) Light petroleum, benzene, PTSA/EtOH 71%; (c) Pyridine, benzoyl chloride, 70-75°C, 5 h, 51%; (d) Benzene, DMSO, Ac2O 17 h, 62%; (e) Chloroform/methanol NaBH4, 2h, 96%; (f) Sodium, dry MeOH, 99%; (g) 80% acetic acid, heat, 76%.
Figure 11
Figure 11
Scheme 20
Scheme 20
Reaction conditions: (a) DIBAL-H (2.7 eq), CH2Cl2, –78°C; (b) PMB-Cl, NaH, DMF; (c) PTSA (cat), MeOH/H2O, 5 min., reflux; (d) compound 163 (3 equivalents), mix with reagent 164, 5-p-F-Ph-1H-tetrazole, CH3CN, then, 0°C, mCPBA; 1:1 mixture of 165 and 166, separated by chromatography or recrystallization and yield based upon consumption of P(III) reagent (164). (e) TFA (2.5%) in CHCl3; (f) P(III) reagent 167 (10 eq), 4,5-dicyanoimidazole (15 eq), 0°C, CH3CN, then MCPBA (10 eq).
Scheme 21
Scheme 21
Reaction conditions: Pyrophosphate formation- (a) DBU, then BSTFA in CH3CN to give intermediate 171; (b) TFA in Methanol then remove solvent; (c) P(III) reagent 173, 1H-tetrazole/CH3CN, then MCPBA. B = DBU.
Scheme 22
Scheme 22
Reaction conditions: (a) H2, palladium black or PtO2, 80 bar, tert-BuOH/H2O, 4/1 to 1/1, NaHCO3, 3 h, recrystallise product.
Scheme 23
Scheme 23
Reaction conditions: Reagent 164, (1 eq) 179 (3 eq), DCI CH3CN, 0°C, tert-BuOOH, (5.5 M in nonane), 45% for (180), 36% for (181) and resolved by chromatography and re-crystallisation (high purity), yield based upon consumption of reagent 164; (b) PTSA (cat), MeOH/CH2Cl2, recrystallize; (c) reagent 167, DCI, 0°C, CH3CN, 0°C, MCPBA, recrystallise.
Scheme 24
Scheme 24
Reaction conditions: (a) see Scheme 21; (b) H2, palladium black or PtO2, 80 bar, tert-BuOH/H2O, 4/1 to 1/1, NaHCO3, 3 h, recrystallize product.
Scheme 25
Scheme 25
Reaction conditions: (a) BnBr, NaH, DMF; (b) reagent 190, CH2Cl2, 5-Ph-1H-tetrazole, then MCPBA, –40°C→rt; (c) 90% TFA(aq), 1:1; (d) reagent 173, CH2Cl2, 5-Ph-1H-tetrazole; (e) MCPBA, –40°C→rt; (f) DBU then BSTFA; (g) TFA, MeOH; (h) reagent 173, CH2Cl2, 5-Ph-1H-tetrazole; (i) MCPBA, –40°C→rt; (j) Pd(OH)2, H2, tert-BuOH, H2O (196 was prepared in the presence of DBU to inhibit O-benzyl deprotection).
Scheme 26
Scheme 26
Reaction conditions: (a) reagent 198, tert-BuOOH, 1 h, (b) PTSA, CH2Cl2, MeOH, Δ, 10 min; (c) reagent 164, 1H-tetrazole, CH3CN, then MCPBA; (d) 5% TFA, CHCl3, 4 h, recrystallize; (e) reagent 167, DCI, CH3CN, then MCPBA.
Scheme 27
Scheme 27
Reaction conditions: (a) See Scheme 21 for reaction conditions; (b) Pd/C, H2 (180 bar), tertBuOH, H2O, NaHCO3.
Scheme 28
Scheme 28
Reaction conditions: (a) (BnO)2P(O)CH2CO2H, DCC, CH2Cl2, 73%; (b) TFA, H2O, 5 min, up to 62%; (c) reagent 173, 5-Ph-1H-tetrazole, CH2Cl2, then 3-chloroperoxybenzoic acid, CH2Cl2, up to 93%; (d) H2, Palladium hydroxide/carbon, MeOH, H2O, 50 psi, 92%; (e) BnBr, NaH, DMF, 55%; (f) (BnO)2P(O)CH2CO2H, EDAC, DMAP, CH2Cl2, 95%; (g) H2, Palladium hydroxide/carbon, MeOH, TEAB(aq) 79%; (h) H2, Palladium hydroxide/carbon, MeOH, H2O, 50 psi, 79%.
Scheme 29
Scheme 29
Reaction conditions: (a) Benzyl((bis(benzyloxy)phosphoryl)methyl)-phosphonochloridate, KHMDS, THF, –78°C → rt, O/N; (b) Sodium methoxide, MeOH, rt, O/N, then p-toluenesulfonic acid, H2O, (CH3)2CO, O/N; (c) reagent 167, MeCN, 1H-tetrazole, 0°C→rt, 1.5 days, then 3-chloroperoxybenzoic acid, MeCN, 0°C→rt, 3 h; (d) H2, Palladium black, NaHCO3, t-BuOH/H2O, rt, O/N; (e) NH3(aq) conc, 4 days, then H+-Dowex.
Scheme 30
Scheme 30
Reagents and conditions: (a) DIPE, MeOH, 14 h 36°C; (b) (bis(benzyloxyphosphoryloxy)methyl) phosphoryl chloride, DBU, 1H-tetrazole, CH2Cl2, 0°C→rt, O/N; (c) DIBAL-H, CH2Cl2, –78°C, 6 min; (d) TFA-MeOH-CH2Cl2, 0°C, 3h; (e) Reagent 167, 5-Ph-1H-tetrazole, CH2Cl2, 0°C→rt, 18 h, then MCPBA oxidation, 78°C→rt, 3h; (f) H2, Palladium black, NaHCO3, H2O-tBuOH, rt, O/N; (g) NH3(aq) conc., rt, 4 days, then Dowex H+ form.
Scheme 31
Scheme 31
Reagents and conditions: (a) Bis[6-trifluoromethyl)benzotriazol-1-yl)]methylphosphonate, pyridine, then BnOH, deprotect using palladium black, H2, H2O, NaHCO3; (b) SO3, pyr.; then tert-butanol, H2O, NaHCO3; (c) RuCl3.H2O, CCl4, NaIO4, MeCN, H2O; deprotection for (b) and (c) as for (a).
Scheme 32
Scheme 32
Reagents and conditions: (a) TBAF in THF; then reagent 173, CH2Cl2, 1H-tetrazole, then MCPBA; (b) ceric ammonium nitrate, MeCN, H2O; then (MeO)(BnO)PNiPr2, CH2Cl2, 1H-tetrazole; then MCPBA; (c) palladium black, H2, tert-butanol, H2O, NaHCO3.
Figure 12
Figure 12
Inositol phosphate ligands evaluated at PPIP5K2; compound 245 is the most potent ligand.
Scheme 33
Scheme 33
Reagents and conditions: (a) EtiPr2N-MeOH, (1:4), 36°C, 11 h, 91%; (b) Reagent 248, 4,5-dicyanoimidazole, CH2Cl2, 0°C, to rt, 20 min., then AcOOH, –18°C, to rt, 1 h, 70%; (c) Formic acid-CH2Cl2 (7:3), rt, 3.5 h; (d) Reagent 198, 4,5-dicyanoimidazole, CH2Cl2/MeCN, 4:1, rt, 1 h, then AcOOH, –18°C, to rt, 1.5 h, 48% (over 2 steps); (e) Formic acid/CH2Cl2, 95:5, 4.5 h; (f) 1,1-Dimethoxybutane, CH2Cl2, jandajel pyridinium trifluoroacetate, rt, 23 h, Dowex 50WX8, H+, 1 h; (g) Reagent 251 4,5-dicyanoimidazole, CH2Cl2-MeCN, rt, 30 min, then AcOOH, –18°C, to rt, 30 min, 46% (over 3 steps); (h) CH2Cl2, piperidine, rt, 1 h; (i) bromomethyl acetate, EtiPr2N, MeCN, rt, 10 h, 16% (over 2 steps).
Figure 13
Figure 13
Caged C8-PtdIns(3,4,5)P3 (253) protected with acetoxymethyl groups that are enzymatically hydrolyzed to give a photolabile derivative (254) prior to uncaging.
Scheme 34
Scheme 34
Reagents and conditions: (a) BzCl in CHCl3, pyr. –40°C, 1 h; (b) MEM-Cl, Hünigs base, CHCl3, Δ, 48h; (c) 65% HCOOH, in MeOH, rt, 48h; (d) 4-(dimethoxymethyl)phenol, CH2Cl2, PPTS, rt, 24 h, then 40 °C for 4 h; (e) Wang alcohol resin, DIAD, triphenylphosphine, THF, rt, 48 h; (f) DIBAL-H, CH2Cl2, −78°C → −30°C, 3 h; (g) reagent 173, DCI, CH2Cl2, CH3CN, 24 h, then peracetic acid, −30°C → rt, 1 h; (h) TASF in DMF, 32 h; (i) glycerol diester phosphoramidite, DCI, CH2Cl2, MeCN, 24 h, then peracetic acid −30°C → rt, 1 h; (j) DDQ, CH2Cl2, H2O; (k) TMSBr, rt, 1h.
Figure 14
Figure 14
The structure of a mammalian phospholipid (260) compared to the newly discovered plasmanylinositol (261) found in Dictyostelium.
Figure 15
Figure 15
The structures of benzene polyphosphates showing agonist behavior and antagonist behavior at the Ins(1,4,5)P3 receptor.

References

    1. Michell RH. Biochem Soc Symp. 2007;74:223–246. - PubMed
    2. Michell RH. Nat Rev Mol Cell Biol. 2008;9:151–161. - PubMed
    3. Michell RH. Adv Enzyme Regul. 2011;51:84–90. - PubMed
    1. Parys JB, De Smedt H. Adv Exp Med Biol. 2012;740:255–279. - PubMed
    2. Shears SB, Ganapathi SB, Gokhale NA, Schenk TMH, Wang H, Weaver JD, Zaremba A, Zhou Y. Subcell Biochem. 2012;59:389–412. - PMC - PubMed
    1. Saiardi A. Adv Biol Regul. 2012;52:351–359. - PubMed
    1. Boss WF, Im YJ. Annu Rev Plant Biol. 2012;63:409–429. - PubMed
    1. Alcázar-Román AR, Wente SR. Chromosoma. 2008;117:1–13. - PubMed

Publication types

MeSH terms

Substances