Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Dec 22:12:222.
doi: 10.1186/s12985-015-0439-5.

MERS coronavirus: diagnostics, epidemiology and transmission

Affiliations
Review

MERS coronavirus: diagnostics, epidemiology and transmission

Ian M Mackay et al. Virol J. .

Abstract

The first known cases of Middle East respiratory syndrome (MERS), associated with infection by a novel coronavirus (CoV), occurred in 2012 in Jordan but were reported retrospectively. The case first to be publicly reported was from Jeddah, in the Kingdom of Saudi Arabia (KSA). Since then, MERS-CoV sequences have been found in a bat and in many dromedary camels (DC). MERS-CoV is enzootic in DC across the Arabian Peninsula and in parts of Africa, causing mild upper respiratory tract illness in its camel reservoir and sporadic, but relatively rare human infections. Precisely how virus transmits to humans remains unknown but close and lengthy exposure appears to be a requirement. The KSA is the focal point of MERS, with the majority of human cases. In humans, MERS is mostly known as a lower respiratory tract (LRT) disease involving fever, cough, breathing difficulties and pneumonia that may progress to acute respiratory distress syndrome, multiorgan failure and death in 20% to 40% of those infected. However, MERS-CoV has also been detected in mild and influenza-like illnesses and in those with no signs or symptoms. Older males most obviously suffer severe disease and MERS patients often have comorbidities. Compared to severe acute respiratory syndrome (SARS), another sometimes- fatal zoonotic coronavirus disease that has since disappeared, MERS progresses more rapidly to respiratory failure and acute kidney injury (it also has an affinity for growth in kidney cells under laboratory conditions), is more frequently reported in patients with underlying disease and is more often fatal. Most human cases of MERS have been linked to lapses in infection prevention and control (IPC) in healthcare settings, with approximately 20% of all virus detections reported among healthcare workers (HCWs) and higher exposures in those with occupations that bring them into close contact with camels. Sero-surveys have found widespread evidence of past infection in adult camels and limited past exposure among humans. Sensitive, validated reverse transcriptase real-time polymerase chain reaction (RT-rtPCR)-based diagnostics have been available almost from the start of the emergence of MERS. While the basic virology of MERS-CoV has advanced over the past three years, understanding of the interplay between camel, environment, and human remains limited.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
A timeline of some key scientific milestones, mass gatherings of relevance and clusters and outbreaks of interest to the understanding of MERS-CoV infection among humans and transmission from animals to humans. A yellow circle indicates when a country reported a laboratory confirmed detection and an orange circle denotes ensuing local transmission. A sample of the mentions of DC contact prior to disease is indicated by a black camel icon. DPP4-dipeptidyl peptidase 4; KSA-the Kingdom of Saudi Arabia; Mab-monoclonal antibody; rAdV-recombinant adenovirus; rMVA-recombinant modified vaccinia virus Ankara; UAE-United Arab Emirates
Fig. 2
Fig. 2
Schematic of MERS-CoV genome drawn to scale (EMC/2012; JX869059 [18].). Open reading frames are indicated as yellow rectangles bracketed by terminal untranslated regions (UTR; grey rectangles). FS-frame-shift. Predicted regions encompassing recombination break-points are indicated by orange pills. Created using Geneious v8.1 [211] and annotated using Adobe Illustrator. Beneath this is a schematic depicting the location of RT-PCR primers (blue arrows indicate direction) and oligoprobes (green rectangles) used in the earliest RT-rtPCR screening assays and conventional, semi-nested (three primers) RT-PCR confirmatory sequencing assays [47, 48]. Publication order is noted by first [27th September 2012; red] and second [6th December 2012; orange] coloured rectangles; both from Corman et al. [47, 48] Those assays recommended by the WHO are highlighted underneath by yellow dots [53]. The NSeq reverse primer has consistently contained one sequence mismatch with some MERS-CoV variants. An altered version of that from Mackay IM, Arden KE. Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res 2015 Vol 202:60–88 with permission from Elsevier [5]
Fig. 3
Fig. 3
Monthly detections of MERS-CoV (blue bars) and of cases who died (red bars) with some dates of interest marked for 2012 to 4th September 2015. An approximation of when DC calving season [128] and when recently born DCs are weaned is indicated. Spring (green) and summer (orange) in the Arabian Peninsula are also shaded. Note the left-hand y-axis scale for 2014 and 2015 which is greater than for 2012/13. Sources of these public data include the WHO, Ministries of Health and FluTrackers [–209]. Earlier and subsequent versions of this chart are maintained on a personal blog [210]. Modified and reprinted from Mackay IM, Arden KE. Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res 2015 Vol 202:60–88 with permission from Elsevier [5]
Fig. 4
Fig. 4
A speculative series of how humans and DCs contribute to the global tally of MERS cases. a. Risks for acquiring MERS-CoV from a DC. This illustration highlights risks that may originate from a droplet transmission component (be they larger, heavier wet droplets or the drier, airborne gel-like droplet nuclei) or a direct contact component (within the green circle). No routes of MERS-CoV acquisition to or between humans have been proven to date. Modified and reprinted from Mackay IM, Arden KE. Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res 2015 Vol 202:60–88 with permission from Elsevier [5]. b Camel-to-human infections appear to be infrequent, while human-to-human spread of infection is regularly facilitated by poor IPC in healthcare settings where transmission is amplified, accounting for the bulk of cases. There are human MERS cases that do not fall into either category of source and it is unclear if these acquired infection through some entirely separate route, or from cases that escaped diagnosis. c Hypothetical ways in which subclinical (when infection may not meet a previously defined clinical threshold of signs and/or symptoms) or asymptomatic (no obvious signs or measured, noticed or recalled symptoms of illness) MERS-CoV infection may be implicated in transmission
Fig. 5
Fig. 5
Data on MERS-CoV detections among HCWs based on publicly described laboratory confirmed cases collated into the author’s curated line list as at 4th September 2015. Sources of these public data include the WHO, Ministries of Health and FluTrackers [–209]. Earlier and subsequent versions of this chart are maintained on a personal blog [210]
Fig. 6
Fig. 6
The genetic relationship between MERS-CoV nucleotide sequences (downloaded from GenBank using the listed accession numbers and from virological.org [212]). This neighbour joining tree was created in MEGA v6 using an alignment of human and DC-derived MERS-CoV sequences (Geneious v8.1 [211]). Clades are indicated next to dark (Clade A) or pale (Clade B) blue vertical bars. Camel icons denote genomes from DCs. Healthcare or community outbreaks are boxed and labelled using previously described schemes [212, 213]

References

    1. NOVEL CORONAVIRUS - SAUDI ARABIA: HUMAN ISOLATE. [http://www.promedmail.org/direct.php?id=20120920.1302733]
    1. Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill. 2012;17:20290. - PubMed
    1. Middle East Respiratory Syndrome coronavirus (MERS-CoV) – Saudi Arabia | 2 September 2015 [http://www.who.int/csr/don/02-september-2015-mers-saudi-arabia/en/]
    1. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. M Bio. 2014;5:e00884–00814. - PMC - PubMed
    1. Mackay IM, Arden KE. Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res. 2015;202:60–88. doi: 10.1016/j.virusres.2015.01.021. - DOI - PMC - PubMed

MeSH terms