Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;16(1):4-11.
doi: 10.2174/1566524016666151222142446.

Development of New Therapeutic Agents for Fibrodysplasia Ossificans Progressiva

Affiliations
Review

Development of New Therapeutic Agents for Fibrodysplasia Ossificans Progressiva

Y Luo et al. Curr Mol Med. 2016.

Abstract

Fibrodysplasia ossificans progressiva (FOP, MIM #135100) is a rare genetic disorder of heterotopic endochondral ossification, resulting in transformation of soft tissue into episodic bone formation. Currently, no effective treatment for FOP has been established. The causative heterozygous genetic mutations have been identified in either the intracellular glycine-serine-rich (GS) domain or kinase domain of ALK2 (Activin-like kinase-2, also known as Activin A receptor type I, ACVR1), a type I receptor of bone morphogenetic proteins (BMP). Cumulative studies support that these mutations abnormally activate BMP signaling in a ligandindependent manner by reducing the ALK2 interaction with the negative regulator FKBP12, whereas others argue a ligand-dependent BMP signaling activation in FOP. Nevertheless, in either the ligand-independent or ligand-dependent model, ALK2 receptor activation is essential for heterotopic ossification in FOP. Thus targeting ALK2 likely represents an effective treatment for FOP. In this article, we critically review the recent progress on therapeutic strategies, with a focus on development of small molecule ALK2 inhibitors to suppress BMP signaling for FOP treatment.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources