Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles
- PMID: 26696811
- PMCID: PMC4672084
- DOI: 10.3389/fnins.2015.00448
Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles
Abstract
Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses.
Keywords: ALS; C9orf72; Golgi fragmentation; SOD1; TBCE; TDP-43; microtubules; neurodegeneration.
Figures


Similar articles
-
Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization.Hum Mol Genet. 2014 Nov 15;23(22):5961-75. doi: 10.1093/hmg/ddu320. Epub 2014 Jun 20. Hum Mol Genet. 2014. PMID: 24951541
-
Sensory neuropathy in progressive motor neuronopathy (pmn) mice is associated with defects in microtubule polymerization and axonal transport.Brain Pathol. 2017 Jul;27(4):459-471. doi: 10.1111/bpa.12422. Epub 2016 Oct 18. Brain Pathol. 2017. PMID: 27488538 Free PMC article.
-
Stathmin 1/2-triggered microtubule loss mediates Golgi fragmentation in mutant SOD1 motor neurons.Mol Neurodegener. 2016 Jun 9;11(1):43. doi: 10.1186/s13024-016-0111-6. Mol Neurodegener. 2016. PMID: 27277231 Free PMC article.
-
Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences.Front Neurosci. 2015 Oct 27;9:400. doi: 10.3389/fnins.2015.00400. eCollection 2015. Front Neurosci. 2015. PMID: 26578862 Free PMC article. Review.
-
Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death.J Neurol Sci. 2006 Jul 15;246(1-2):21-30. doi: 10.1016/j.jns.2006.01.019. Epub 2006 Mar 20. J Neurol Sci. 2006. PMID: 16545397 Review.
Cited by
-
ACBD3 is required for FAPP2 transferring glucosylceramide through maintaining the Golgi integrity.J Mol Cell Biol. 2019 Feb 1;11(2):107-117. doi: 10.1093/jmcb/mjy030. J Mol Cell Biol. 2019. PMID: 29750412 Free PMC article.
-
Novel SCYL2 Mutations and Arthrogryposis Multiplex Congenita 4: Case Report and Review of the Literature.Int J Mol Sci. 2025 Mar 27;26(7):3079. doi: 10.3390/ijms26073079. Int J Mol Sci. 2025. PMID: 40243816 Free PMC article.
-
Ultrastructural Abnormalities in Induced Pluripotent Stem Cell-Derived Neural Stem Cells and Neurons of Two Cohen Syndrome Patients.Cells. 2023 Nov 25;12(23):2702. doi: 10.3390/cells12232702. Cells. 2023. PMID: 38067130 Free PMC article.
-
Reevaluating Golgi fragmentation and its implications in wound repair.Cell Regen. 2024 Feb 13;13(1):4. doi: 10.1186/s13619-024-00187-w. Cell Regen. 2024. PMID: 38349608 Free PMC article. Review.
-
Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex.Acta Neuropathol Commun. 2022 Oct 29;10(1):156. doi: 10.1186/s40478-022-01455-z. Acta Neuropathol Commun. 2022. PMID: 36309735 Free PMC article.
References
-
- Aguilera-Gomez A., Rabouille C. (2015). “Intra golgi transport,” Encyclopedia of Cell Biology, Vol. 2, eds Bradshaw R., Stahl P. (Amsterdam: Elsevier; ), 354–362. 10.1016/B978-0-12-394447-4.20034-5 - DOI
-
- Al-Sarraj S., King A., Troakes C., Smith B., Maekawa S., Bodi I., et al. . (2011). p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 122, 691–702. 10.1007/s00401-011-0911-2 - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous