Preferential Attachment of Specific Fluorescent Dyes and Dye Labeled DNA Sequences in a Surface Enhanced Raman Scattering Multiplex
- PMID: 26698880
- DOI: 10.1021/acs.analchem.5b02776
Preferential Attachment of Specific Fluorescent Dyes and Dye Labeled DNA Sequences in a Surface Enhanced Raman Scattering Multiplex
Abstract
A significant advantage of using surface enhanced Raman scattering (SERS) for DNA detection is the capability to detect multiple analytes simultaneously within the one sample. However, as the analytes approach the metallic surface required for SERS, they become more concentrated and previous studies have suggested that different dye labels will have different affinities for the metal surface. Here, the interaction of single stranded DNA labeled with either fluorescein (FAM) or tetramethylrhodamine (TAMRA) with a metal surface, using spermine induced aggregated silver nanoparticles as the SERS substrate, is investigated by analyzing the labels separately and in mixtures. Comparison studies were also undertaken using the dyes in their free isothiocyanate forms, fluorescein isothiocyanate (F-ITC) and tetramethylrhodamine isothiocyanate (TR-ITC). When the two dyes are premixed prior to the addition of nanoparticles, TAMRA exerts a strong masking effect over FAM due to a stronger affinity for the metal surface. When parameters such as order of analyte addition, analysis time, and analyte concentration are investigated, the masking effect of TAMRA is still observed but the extent changes depending on the experimental parameters. By using bootstrap estimation of changes in SERS peak intensity, a greater insight has been achieved into the surface affinity of the two dyes as well as how they interact with each other. It has been shown that the order of addition of the analytes is important and that specific dye related interactions occur, which could greatly affect the observed SERS spectra. SERS has been used successfully for the simultaneous detection of several analytes; however, this work has highlighted the significant factors that must be taken into consideration when planning a multiple analyte assay.
Similar articles
-
Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy.Analyst. 2014 Aug 7;139(15):3735-43. doi: 10.1039/c4an00680a. Analyst. 2014. PMID: 24915043
-
Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition.Chemphyschem. 2008 Apr 21;9(6):867-72. doi: 10.1002/cphc.200700591. Chemphyschem. 2008. PMID: 18386261
-
Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles.Analyst. 2012 May 7;137(9):2063-8. doi: 10.1039/c2an35112a. Epub 2012 Mar 21. Analyst. 2012. PMID: 22434199
-
Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.Anal Bioanal Chem. 2009 Aug;394(7):1747-60. doi: 10.1007/s00216-009-2762-4. Epub 2009 Apr 22. Anal Bioanal Chem. 2009. PMID: 19384546 Review.
-
SERS--a single-molecule and nanoscale tool for bioanalytics.Chem Soc Rev. 2008 May;37(5):1052-60. doi: 10.1039/b708459p. Epub 2008 Mar 20. Chem Soc Rev. 2008. PMID: 18443689 Review.
Cited by
-
Photovoltaic cells as a highly efficient system for biomedical and electrochemical surface-enhanced Raman spectroscopy analysis.RSC Adv. 2019 Jan 2;9(2):576-591. doi: 10.1039/c8ra08319c. eCollection 2019 Jan 2. RSC Adv. 2019. PMID: 35517626 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous